期刊文献+

基于不完备信息系统的分配约简的启发式算法 被引量:3

A Heuristic Algorithm for Assignment Reduction in Incomplete Information Systems
下载PDF
导出
摘要 研究了不完备信息系统下的属性约简,基于相容关系提出一种遗传算法的分配约简算法,算法编码采用了二进制一维编码形式,比较适合地表达了遗传算子.为了加快算法的收敛,在适应值函数中引入了惩罚函数,可以保证所求约简既含较少属性又有较强支持度.在交叉规则中,采用了单点交叉,最大迭代代数被作为停止准则,算法获得较佳的搜索效果.通过实例分析,可以证明该算法是求解知识约简问题的快速有效方法. Studying the attribute reduction in incomplete information systems, a GA-based algorithm is proposed to reduce assignment with the compatibility relation taken into account. The one-dimensional binary code is used to encode the algorithm because it is suitable to express genetic operators. Penalty function is introduced in the adaptive value function to speed up the convergence of the algorithm and ensure that the assignment reduction includes fewer attributes with stronger support. In addition, the single-point crossing is used as the rule with a given MaxGen iterative solution taken as termination criterion, thus providing a good searching result. An exemplifying analysis shows that the algorithm proposed is quick and effective in solving the problems of reducing knowledge.
作者 宫俊 唐加福
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期19-22,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(70471028) 沈阳市自然科学基金资助项目(1041006-1-03-05)
关键词 粗糙集 不完备信息系统 属性约简 分配约简 遗传算法 rough set incomplete information system attribute reduction assignment reduction genetic algorithm
  • 相关文献

参考文献13

  • 1Pawlak Z.Rough sets[J].International Journal of Computer & Information Sciences,1982,11:341-356. 被引量:1
  • 2Pawlak Z,Grzymala-Busse J,Slowinski R,et al.Rough sets[J].Communications of the ACM,1995,38(11):89-95. 被引量:1
  • 3Ziarko W.Variable precision rough set model[J].Journal Computer and System Sciences,1993,46:39-59. 被引量:1
  • 4Beynon M.Reduction within the variable precision rough sets model:a further investigation[J].European Journal of Operational Research,2001,134:592-605. 被引量:1
  • 5An A,Shan N.Discovering rules for water demand prediction:an enhanced rough set approach[J].Engineering Application and Artificial Intelligence,1996,9(60):645-653. 被引量:1
  • 6张登峰,李忠新,王执铨,胡寿松.故障诊断专家系统知识获取的变精度粗集方法[J].南京理工大学学报,2004,28(2):118-122. 被引量:4
  • 7刘春亚 何伟.一种基于粗集的缺损数据的处理方法[J].计算机科学,2002,29(9):44-46. 被引量:4
  • 8张伟,廖晓峰,吴中福.一种基于Rough集理论的不完备数据分析方法[J].模式识别与人工智能,2003,16(2):158-163. 被引量:14
  • 9Hong T P,Tseng L H,Wang S L,et al.Learning rules from incomplete training examples by rough sets[J].Expert Systems with Applications,2002,22:285-293. 被引量:1
  • 10Kryszkiewicz M.Rough set approach to incomplete information systems[J].Information Sciences,1998,112:39-49. 被引量:1

二级参考文献12

  • 1余英泽 王国胤 吴渝.一种基于Rough集理论的不完备信息系统处理方法[J].计算机科学,2001,28(5). 被引量:1
  • 2梁吉业 王江 苗夺谦.推广粗糙集模型下粗糙集与粗糙分类的模糊性度量[J].计算机科学,2001,28(5). 被引量:1
  • 3Pawlak Z. Rought Set-Theoretical Aspect of Reasoning about Data. Kluwer Academic Publishers, Dorderecht, Boston,London, 19 91. 被引量:1
  • 4Stefanowski J, Tsoukisa A. On the Extension of Rough Sets under Incomplete Information. In: 7th Intl. workshop,RSFDGRC'99 Yamaguchi, Japan, Proc. New Directions in Rough Sets, Data Mining, and Granular-soft Computing, 1999.73~81. 被引量:1
  • 5Liang Jiye,Xu Zongben. The algorithm on knowledge reduction in incomplete information systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(1) :95~103. 被引量:1
  • 6Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Science,1993,46(1):39-59. 被引量:1
  • 7Czyzewski A, Kostek B. Expert media approach to hearing aids fitting[J]. International Journal of Intelligent Systems,2002,17(2):255-272. 被引量:1
  • 8Düntsch I, Gediga G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence,1998,106(1), 109-137. 被引量:1
  • 9Nowicki R, Slowinski R, Stefanowski J. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Computers in Industry,1992,20(2):141-152. 被引量:1
  • 10苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507

共引文献46

同被引文献186

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部