期刊文献+

一类分形插值函数的分数阶微积分

A Class of Fractional Order Calculus of Fractal Interpolation Function
下载PDF
导出
摘要 介绍了分形插值函数和迭代函数系统以及v阶黎曼-刘维尔分数阶积分、微分的概念和相关定理.由于分形插值函数满足应用分数阶微积分处理问题的条件,所以利用这些概念及分步积分的方法讨论了折线段分形插值函数的分数阶积分的连续性,可微性及哪些点是不可微的,进一步说明了该插值函数分数阶微分的连续性并指出其不连续点,用黎曼-刘维尔分数阶微积分与分形插值函数结合起来研究,目的是想设法跟经典微积分一样,能找出函数上在该点的微积分的具体的实际应用意义.这些理论为研究分形插值函数的分数阶微积分的实际应用意义提供了一些理论基础. The thesis introduces the concept and relative theories of fractal interpolation function and the ReimannLiouville fractional integral of order v and fractional differential. Fractal interpolation functions satisfy the conditions of fractional calculus and fractional differential, so the thesis discusses continuous property; differential property and non- differentiable points of fold line fractal interpolation function's v order integral. Further indicate the continuous property of the interpolation function' s p order differential and points out uncontinuous points by applying these theories. The purpose of studing the thesis is that we can find actual means of fractional calculus of points on functions as classic calculus. These theories provide some theoretical foundations for researching actual application means of fractal interpolation function's fractional order calculus.
出处 《大学数学》 北大核心 2006年第6期106-110,共5页 College Mathematics
关键词 分形插值函数 迭代函数系统 分数阶微积分 fractal interpolation function iterated function system fractional order calculus
  • 相关文献

参考文献8

  • 1Kenneth S.Miller,Bertram Ross.An introduction to the fractional calculus and Fractional differential[M].John Wiley Sisons.Inc,1993. 被引量:1
  • 2Barnsley M F.Fractal Functions and Interpolation[J].Construction Approximation,1986,2:303-329. 被引量:1
  • 3李水根..分形[M],2004.
  • 4孙轶民..分形维数与分数阶微积分[D].南京大学,2002:
  • 5龙晶凡.分形插值的条件.北京师范大学博士论文2001,37(3):289-291. 被引量:1
  • 6冯志刚,田立新,余跃.不同尺度下分形插值函数的积分[J].江苏大学学报(自然科学版),2004,25(1):56-59. 被引量:11
  • 7FENG Zhi-gang,CHEN Gang.On the minkovski dimension of functional digraph[J].Fractals,2003,11(1):87-92. 被引量:1
  • 8冯志刚,王磊.分形插值函数的δ-变差的性质[J].江苏大学学报(自然科学版),2005,26(1):49-52. 被引量:15

二级参考文献11

  • 1[1]Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986(2):303-329. 被引量:1
  • 2[2]Xie H,Sun H.The study on bivariate fractal interpolation functions and creation of fractal interpolation surface[J].Fractals,1997,5(4):625-634. 被引量:1
  • 3[3]Xie H,Sun H,Ju Y,Feng Z. Study on generation of rock fracture surface by using fractal interpolation[J].Int J of Solids and Structures,2001,38:5765-5787. 被引量:1
  • 4[4]Dalla L.Bivariate fractal interpolation functions on grids[J].Fractals,2002,10(1):53-58. 被引量:1
  • 5[5]Feng Z,Xie H.On stability of fractal interpolation[J].Fractals,1998,6(3):269-273. 被引量:1
  • 6[7]Donovan G C,Geronimo J S,Hadin D R,Massopust P R.Construction of orthogonal wavelets using fractal interpolation functions[J].Sima J Math Anal,1996,27:1158-1192. 被引量:1
  • 7[8]Feng Z,Chen G.Nonorthogonal wavelet packets with r scaling functions[J].J of Computational Analysis and Applications,2001,3(4):317-330. 被引量:1
  • 8钱晓元.[D].大连:大连理工大学,1997. 被引量:5
  • 9BARNALEY M F,ELTON J,HARDIN D,MASSOPUsT D.Hidden variable fractable interpolation function[J].SIAM J Math Anal,1989,20(5):1218—1242. 被引量:1
  • 10FENG Zhi-gang,CHEN Gang.On the Minkovski dimension of functional digraph[J].Fractals,2003,11(1):87—92. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部