期刊文献+

POSITIVE SOLUTION TO FOURTH-ORDER IMPULSIVE DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN 被引量:1

POSITIVE SOLUTION TO FOURTH-ORDER IMPULSIVE DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN
下载PDF
导出
摘要 In order to study three-point BVPs for fourth-order impulsive differential equation of the form with the following boundary conditions u'(0) = u(1) = 0. u'(0) == 0 = u'(1) -φq(α)u'(η). the authors translate the fourth-order impulsive differential equations with p-Laplacian (*) into three-point BVPs for second-order differential equation without impulses and two-point BVPs for second-order impulsive differential equation by a variable transform. Based on it, existence theorems of positive solutions for the boundary value problems (*) are obtained. In order to study three-point BVPs for fourth-order impulsive differential equation of the form {(Фp(μ″(t)))″-f(t,u(t))=0,t≠ti, △u(ti)=-Ii(u(ti)),i=1,2,……,k,(*) △u'(ti)=-Li(u(ti)), i=1,2,……,k,with the following boundary conditions u'(0)=u(1)=0,u″(0)=0=u"(1) -Фq(α)u″(η),the authors translate the fourth-order impulsive differential equations with p-Laplacian (*) into three-point BVPs for second-order differential equation without impulses and two-point BVPs for second-order impulsive differential equation by a variable transform. Based on it, existence theorems of positive solutions for the boundary value problems (*) are obtained.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1077-1082,共6页 Acta Mathematica Scientia
基金 Supported by the National Natural Foundation of China (10371006)the Youth Teachers Science Projects of Central University for Nationalities (No.A08).
关键词 四阶脉冲微分方程 P-拉普拉斯算子 正解 三点边值问题 Impulsive differential equation BVP P-Laplacian Variable transform
  • 相关文献

参考文献1

二级参考文献12

  • 1MA Ru-yun. Positive solutions of a nonlinear three-point boundary value problem[J]. Electron J Differential Equations, 1999, 199: 1-8. 被引量:1
  • 2MA Ru-yun. Multiplicity of positive solutions for second-order three-point boundary value problems[J].Comput Math Appl, 2000, 40: 193-204. 被引量:1
  • 3MA Ru-yun. Positive solutions for second-order three-point boundary value problems[J]. Appl Math Lett,2001, 14: 1-5. 被引量:1
  • 4HE Xiao-ming, GE Wei-gao. Triple solutions for second-order three-point boundary value problems[J].Journal of Mathematics Analysis and Applications, 2002, 268: 256-265. 被引量:1
  • 5HE Xiao-ming, GE Wei-gao. First-order impulsive functional differential equations with periodic boundaryvalue conditions[J]. Indian J Pure Appl Math, 2002, 33(8): 1257-1273. 被引量:1
  • 6RAVI P, AGARWAL, DONAL O'Regan. Multiple solutions for second order impulsive differential equations[J]. Applied Mathematics and Computation, 2000, 114: 52-59. 被引量:1
  • 7BAINOV D D, HRJSTOV S G. The method of quasi-linearization for the periodic boundary value problemfor systems of impulsive differential equations[J]. Applied Mathematics and Computation, 2001, 117: 73-85. 被引量:1
  • 8LIZ E. Existence and approximation of solutions for impulsive first order problem with nonlinear boundary conditions[J]. Nonlinear Analysis Theory, Methods and Applications, 1995. 25(11): 1191-1198. 被引量:1
  • 9DONG Yu-jun, Periodic solutions second order impulsive differential systems[J]. Nonlinear Analysis Theory,Methods and Applications, 1996, 27(9): 811-820. 被引量:1
  • 10LIU Bing, YU Jian-she. Existence of solution for m-point boundary value problem of second-order differential systems with impulses[J]. Applied Mathematics and Computation, 2002, 125: 155-175. 被引量:1

共引文献4

同被引文献17

  • 1Shi G, Chen S. Positive solutions of fourth-order superlinear singular boundary value problems. Bull Austral Math Soc, 2002, 66:95-104 被引量:1
  • 2Wei Z. Existence of positive solutions for 2nth-order singular sublinear boundary value problems. J Math Anal Appl, 2005, 306:619-636 被引量:1
  • 3Zhang J, Shi G. Positive solutions for fourth order singular p-Laplacian boundary value problems. Appl Anal, 2006, 85:1373-1832 被引量:1
  • 4Aftabizadeh A R. Existence and uniqueness theorems for fourth-order boundary value problems. J Math Anal Appl, 1986, 116:415-426 被引量:1
  • 5Agarwal R P On fourth-order boundary value problems arising in beam analysis. Diff Integral Equations, 1989, 2:91-110 被引量:1
  • 6Bai Z. The method of lower and upper solutions for a bending of an elastic beam equation. J Math Anal Appl, 2000, 248:195-202 被引量:1
  • 7Davis J D, Henderson J, Wong P J Y. General Lidstone problems: multiplicity and symmetry of solutions. J Math Anal Appl, 2000, 251:527-548 被引量:1
  • 8Graef J R, Yang B. Existence and nonexistence of positive solutions of fourth order nonlinear boundary value problem. Appl Anal, 2000, 74:201-214 被引量:1
  • 9Jiang D, Gao W. Upper and lower solution method and a singular boundary value problems for the one-dimension p-Laplacian. J Math Anal Appl, 2000, 252:631-638 被引量:1
  • 10Ma R, Zhang J, Pu S. The method of lower and upper solutions for fourth-order two-point boundary value problems. J Math Anal Appl, 1997, 215:415-422 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部