期刊文献+

The Existence of Solutions of Three-point Boundary Value Problems for Second Order Impulsive Differential Equation 被引量:5

The Existence of Solutions of Three-point Boundary Value Problems for Second Order Impulsive Differential Equation
下载PDF
导出
摘要 We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2005年第3期247-257,共11页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(10371006)
关键词 impulsive differential equation boundary value problem fixed points CONE 二阶脉冲微分方程 三点边值问题 存在性 固定点
  • 相关文献

参考文献12

  • 1MA Ru-yun. Positive solutions of a nonlinear three-point boundary value problem[J]. Electron J Differential Equations, 1999, 199: 1-8. 被引量:1
  • 2MA Ru-yun. Multiplicity of positive solutions for second-order three-point boundary value problems[J].Comput Math Appl, 2000, 40: 193-204. 被引量:1
  • 3MA Ru-yun. Positive solutions for second-order three-point boundary value problems[J]. Appl Math Lett,2001, 14: 1-5. 被引量:1
  • 4HE Xiao-ming, GE Wei-gao. Triple solutions for second-order three-point boundary value problems[J].Journal of Mathematics Analysis and Applications, 2002, 268: 256-265. 被引量:1
  • 5HE Xiao-ming, GE Wei-gao. First-order impulsive functional differential equations with periodic boundaryvalue conditions[J]. Indian J Pure Appl Math, 2002, 33(8): 1257-1273. 被引量:1
  • 6RAVI P, AGARWAL, DONAL O'Regan. Multiple solutions for second order impulsive differential equations[J]. Applied Mathematics and Computation, 2000, 114: 52-59. 被引量:1
  • 7BAINOV D D, HRJSTOV S G. The method of quasi-linearization for the periodic boundary value problemfor systems of impulsive differential equations[J]. Applied Mathematics and Computation, 2001, 117: 73-85. 被引量:1
  • 8LIZ E. Existence and approximation of solutions for impulsive first order problem with nonlinear boundary conditions[J]. Nonlinear Analysis Theory, Methods and Applications, 1995. 25(11): 1191-1198. 被引量:1
  • 9DONG Yu-jun, Periodic solutions second order impulsive differential systems[J]. Nonlinear Analysis Theory,Methods and Applications, 1996, 27(9): 811-820. 被引量:1
  • 10LIU Bing, YU Jian-she. Existence of solution for m-point boundary value problem of second-order differential systems with impulses[J]. Applied Mathematics and Computation, 2002, 125: 155-175. 被引量:1

同被引文献10

  • 1LANK. Eigenvalues of Second-Order Differential Equations with Singularities[C]. Added Volume: Discrete Contln Dynam Systems, 2001, 被引量:1
  • 2HE Xiao-ming, GE Wei-gao. First-order impulsive functional differential equations with periodic boundary value conditions[J]. Indian J Pure Appl Math, 2002, 33(8): 1257-1272. 被引量:1
  • 3BAINOV D D, HRISTOV S G. The method of quasi-linearization for the periodic boundary value problern for systems of impulsive differential equations[J]. Applied Mathematics and Computation, 2001, 117: 73-85, 被引量:1
  • 4LIZ E. Existence and approximation of solutions for impulsive first order problem with nonlinear boundary conditions, nonlinear analysis theory[J]. Methods and Applications, 1995, 25(11): 1191-1198. 被引量:1
  • 5KRANOSELSKII M A. Topological Methods in the Theory of Nonlinear Integral Equations[M]. New York:Pergamon, 1964. 被引量:1
  • 6DU Zeng-ji, CAI Guo-lan, GE Wei-gao. A class of third-order m-point boundary value problems(BVP)[J].Taiwan Residents Journal of Mathematics, 2005, 9(1): 81-94. 被引量:1
  • 7CAI Guo-lan, GE Wei-gao. M-point BVP for second-order impulsive differential equation at resonance[J].Math Sci Res J, 2005, 9(3): 76-86. 被引量:1
  • 8Zhang Linli,Liu Anping,Chang Tao,He Lianhua.EXISTENCE FOR PERIODIC BOUNDARY VALUE PROBLEM OF FIRST-ORDER INTEGRO-DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2007,23(4):581-585. 被引量:3
  • 9何莲花,刘安平.一阶脉冲微分方程的周期解(英文)[J].数学杂志,2012,32(5):825-831. 被引量:4
  • 10蔡果兰,阎卫平.脉冲中立型时滞微分方程的正解的存在性[J].系统科学与数学,2004,24(1):102-109. 被引量:8

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部