期刊文献+

Synthesis of Ni-Zn ferrite and its microstructure and magnetic properties 被引量:1

Synthesis of Ni-Zn ferrite and its microstructure and magnetic properties
下载PDF
导出
摘要 Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite's slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200℃ is ln[-ln(1-x)] =-0.78+0.951n t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials. Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite’s slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200 ℃ is ln[?ln(1?x)]=?0.78+0.95ln t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.
出处 《Journal of Central South University of Technology》 2006年第6期618-623,共6页 中南工业大学学报(英文版)
基金 Project(50204001) supported by the National Natural Science Foundation of China
关键词 sodium jarosite hydrothermal synthesis Ni-Zn ferrite NANOPARTICLE 镊-锌铁氧体 水热合成法 炉渣 尖晶石相 纳米颗粒 显微结构 磁学性质
  • 相关文献

参考文献5

二级参考文献27

共引文献39

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部