期刊文献+

一类具有时滞Holling-IV型捕食-食饵系统的Hopf分支 被引量:3

Hopf Bifurcation in a Delayed Predator-prey System with Holling-IV Functional Response
下载PDF
导出
摘要 研究了一类具有时滞的Holling-IV型功能性反应和Leslies形式的捕食者数量反应的两种群竞争模型.讨论了平衡点的存在性,局部稳定性和Hopf分支的存在性动力学性质. In this paper, we investigateda predator-prey predator's numerical response of Leslie form. Existence furcation's existence was discussed.
出处 《云南民族大学学报(自然科学版)》 CAS 2007年第1期18-21,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
关键词 HOPF分支 时滞 稳定性 平衡点 Holling-Ⅳ功能性反应 Hopf bifurcation delay stability equilibrium Holling-Ⅳ
  • 相关文献

参考文献6

  • 1CHENG J S, YI P L, MAO A It. Stability and Hopf Bifurcation for an Epidemic Disease Model with Delay[ J ]. Chaos, Solitons and Fractals,2006,30( 1 ) :204-216. 被引量:1
  • 2Ji-caiHuang,Dong-meiXiao.Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-Ⅳ Functional Response[J].Acta Mathematicae Applicatae Sinica,2004,20(1):167-178. 被引量:15
  • 3HALE J K. Theory of Functional Diffential Equations[ M ]. New York : Springer_ Verlag, 1997. 被引量:1
  • 4LI Y L, XIAO D M. Bifurcations of a Predator-prey System of Holling and Leslie types[ J ]. Chaos, Solitons and Fractals,2006,in press. ( http://www, sciencedirect, com/sciencc? ob = MImg&_imagekey = B6TJ4 - 4K128Y9 - 3 - 5P& cdi =5300& user = 4339320&_orig = search& coverDate = 05%2F22%2F2006& sk = 999999999&view = c&_alid = 473490282&_rdoc = l&wchp = dGLbVtz - zSkWz&md5 = 9baa23720f43bScec7e85c4bfa203f0c&ie =/sdarticle. pdf). 被引量:1
  • 5马知恩,周义仓编著..常微分方程定性与稳定性方法[M].北京:科学出版社,2001:311.
  • 6郑祖麻.泛函微分方程理论[M].合肥:安徽教育出版社,1994. 被引量:8

二级参考文献17

  • 1Andronov, A., Leontovich, E.A., Gordon, I.I., Maier, A.G. Theory of Bifurcations of Dynamical Systems on a Plane. Israel Program for Scientific Translations, Jerusalem, 1971. 被引量:1
  • 2Andrews, J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng, 10:707-723 (1968). 被引量:1
  • 3Bogdanov, R. Bifurcation of a limit cycle for a family of vector fields on the plane. Selecta Math. Soviet.,1:373-388 (1981). 被引量:1
  • 4Bogdanov, R. Versal deformations of a singular point on the plane in the case of zero eigenvalues. Selecta Math. Soviet., 1:389-421 (1981). 被引量:1
  • 5Chow, S.N., Hale, J.K. Methods of Bifurcatioa Theory. Springer-Verlag, New York, Heidelbeg, Berlin,1982. 被引量:1
  • 6Collings, J.B. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol., 36:149-168 (1997). 被引量:1
  • 7Freedman, H.I., Wolkowicz, G.S,K. Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48:493-508 (1986). 被引量:1
  • 8Holling, C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomolog. Soc. Can, 45:3-60 (1965). 被引量:1
  • 9Mischaikow, K., Wolkowicz, G.S.K. A predator-prey system involving group defense: a connection matrix approach. Nonlinear Anal., 14:955-969 (1990). 被引量:1
  • 10Rosenzweig, M.L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science, 171:385-387 (1971). 被引量:1

共引文献21

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部