摘要
Rm-边割是指能将阶不小于2m的连通图G分割为各连通分支的阶都不小于m的边割,其中m取正整数,文章证明了对阶为v的连通图G,若G的直径D(G)=2,且最大度Δ≤v-2,则对于任意的m≤v2,G存在Rm-边割。
Rm-edge cut is such an edge cut that separates a connected graph into a disconnected one with no component having order less than m. Let G be a connected graph with order v. It is proved that G exists Rm-edge cut for any m≤[v/2],if D(G)=2,△≤v-2.
出处
《太原科技大学学报》
2006年第6期413-414,422,共3页
Journal of Taiyuan University of Science and Technology
基金
国家自然科学基金(10471081)