摘要
孪晶型阻尼材料已被实际应用,(011)孪晶通过fcc-fct马氏体相变形成,而γMn基合金中,马氏体相变又与合金的反铁磁转变密切相关。因此研究γMn基孪晶型阻尼材料,无疑必须探讨反铁磁转变与一级马氏体相变的之间关系,反铁磁转变和马氏体转变对孪晶形成的作用。本文通对富锰的γMn基合金(Mn-Cu,Mn-Fe,Mn-Ni)的内耗和模量的测量,研究这二类相变在不同材料,不同成分合金中的耦合的机制,以及反铁磁转变和马氏体相变对孪晶形成的作用。结果显示,马氏体相变和反铁磁转变耦合或马氏体相变与孪晶阻尼峰耦合都可以获得材料的高阻尼性能。当锰含量较高时,反铁磁转变和马氏体相变发生耦合,或马氏体相变内耗与孪晶内耗叠加,在室温附近形成高内耗阻尼;当锰含量较低时,马氏体相变温度降到室温以下,反铁磁转变形成的微孪晶亦能产生内耗阻尼峰。
The twin-typed material was practically used. In general the (011) twin is formed with fcc-fct martensitic transformation. But in γMn-based alloys, marternsitic transformation is closely associated with antiferromagnetic transition. So for the study of twin-typed damping materials, the relation between martensitic transformation and antiferromagnetic transition and the role of twin formation must be studied. The paper attempts to investigate the coupling mechanism of two kinds of transformation for different materials and different composition in rich-Mn Mn-based alloys (Mn-Cu, Mn-Fe, Mn-Ni) by the use of internal friction and modulus measurement and to research the effect of antiferromagnetie transition and martensitic transformation on the twin formation. The results show that the high damping of γMn based alloys will be obtained through the coupling between antiferromagnetic transition and martensitie transformation or between martensitic transformation and twin damping.
出处
《物理学进展》
CSCD
北大核心
2006年第3期332-339,共8页
Progress In Physics
基金
国家自然科学基金资助项目(No:50571065)
关键词
反铁磁转变
马氏体相变
孪晶
相变耦合
高阻尼
antiferromagnetic transition
martensitic transformation
twin
transformation coupling
high damping