期刊文献+

锰基合金的反铁磁转变与fct马氏体相变内耗 被引量:4

ANTIFERROMAGNETIC TRANSITION AND FCT MARTENSITIC TRANSFORMATION IN Mn-BASED ALLOYS
下载PDF
导出
摘要 孪晶型阻尼材料已被实际应用,(011)孪晶通过fcc-fct马氏体相变形成,而γMn基合金中,马氏体相变又与合金的反铁磁转变密切相关。因此研究γMn基孪晶型阻尼材料,无疑必须探讨反铁磁转变与一级马氏体相变的之间关系,反铁磁转变和马氏体转变对孪晶形成的作用。本文通对富锰的γMn基合金(Mn-Cu,Mn-Fe,Mn-Ni)的内耗和模量的测量,研究这二类相变在不同材料,不同成分合金中的耦合的机制,以及反铁磁转变和马氏体相变对孪晶形成的作用。结果显示,马氏体相变和反铁磁转变耦合或马氏体相变与孪晶阻尼峰耦合都可以获得材料的高阻尼性能。当锰含量较高时,反铁磁转变和马氏体相变发生耦合,或马氏体相变内耗与孪晶内耗叠加,在室温附近形成高内耗阻尼;当锰含量较低时,马氏体相变温度降到室温以下,反铁磁转变形成的微孪晶亦能产生内耗阻尼峰。 The twin-typed material was practically used. In general the (011) twin is formed with fcc-fct martensitic transformation. But in γMn-based alloys, marternsitic transformation is closely associated with antiferromagnetic transition. So for the study of twin-typed damping materials, the relation between martensitic transformation and antiferromagnetic transition and the role of twin formation must be studied. The paper attempts to investigate the coupling mechanism of two kinds of transformation for different materials and different composition in rich-Mn Mn-based alloys (Mn-Cu, Mn-Fe, Mn-Ni) by the use of internal friction and modulus measurement and to research the effect of antiferromagnetie transition and martensitic transformation on the twin formation. The results show that the high damping of γMn based alloys will be obtained through the coupling between antiferromagnetic transition and martensitie transformation or between martensitic transformation and twin damping.
作者 张骥华
出处 《物理学进展》 CSCD 北大核心 2006年第3期332-339,共8页 Progress In Physics
基金 国家自然科学基金资助项目(No:50571065)
关键词 反铁磁转变 马氏体相变 孪晶 相变耦合 高阻尼 antiferromagnetic transition martensitic transformation twin transformation coupling high damping
  • 相关文献

参考文献18

  • 1Zener C,Elasticity and anelasticity in metal.Chicago Uni.Press,1948.孔庆平,周本濂译,科学出版社,1965. 被引量:1
  • 2Hicks T J,Pepper A R,Smith J H.J.Phys.C.1968,1:1638-1689. 被引量:1
  • 3Ito K,Kobayashi M,Abe H.Metal Science,1979:502-504. 被引量:1
  • 4Ito K,Tsukishima M,Kobayashi M.Trans.Jpn.Institute of Metals,1983,24(7):487-490. 被引量:1
  • 5Nakanishi N,Nagasawa A,Murakami Y.Proc.ICOMAT 1981,C4-35. 被引量:1
  • 6Makhurance P,Gaunt P.J.Phys.C(Solid St.Phys),1969,2:959-965. 被引量:1
  • 7Tsunoda Y,Wakabayashi N.J.Phys.Soc.,Japan,1981,50:3341. 被引量:1
  • 8Lowde R D,Harley R T,Saunders G A,et al.Underhill C.Proc.R.Soc.,London,1981,A374:87. 被引量:1
  • 9Hedley J A.Metal Science J.,1968,2:129-137. 被引量:1
  • 10Patterson W R.Trans.Of the Metallugical Society of AIME,1965,233:438-450. 被引量:1

二级参考文献23

  • 1衣虎春 葛廷燧.时效对Mn-Cu-Al三元合金内耗、杨氏模量和力学性能的影响[J].金属学报,1988,24(10):317-317. 被引量:1
  • 2胡赓祥 戎泳华 等.锰铜系高阻尼合金中调幅分解的电子显微研究[J].电子显微学报,1984,3(4):50-50. 被引量:1
  • 3衣虎春 葛庭燧.-[J].金属学报,1988,24(10):317-317. 被引量:1
  • 4Zener C. Elasticity and Anelasticity in Metal. Chicago:Chicago University Press, 1948. 被引量:1
  • 5Hicks T J, Pepper A B Smith J H. J Phys, 1968; 1C: 1638. 被引量:1
  • 6Ito K, Kobayashi M, Abe H. Met Sci J, 1979; 11:502. 被引量:1
  • 7Ito K, Tsukishima M, Kobayashi M. Trana Jpn Inat Met,1983; 24:487. 被引量:1
  • 8Nakanishi N, Nagasawa A, Murakami Y. J Phys Colloq,1981; 43(C4): 35. 被引量:1
  • 9Makhurance P, Gaunt P. J Phys, 1969; 2C: 959. 被引量:1
  • 10Tsunoda Y, Wakabayashi N. J Phys Soc Jpn, 1981; 50:3341. 被引量:1

共引文献16

同被引文献37

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部