期刊文献+

基于排序优化的微粒群算法 被引量:2

Particle swarm optimization based on permutation
下载PDF
导出
摘要 微粒群算法是一种新颖的群智能仿生进化优化算法,其原理简单,控制参数少,容易实现,在连续空间中有很强的优化能力。研究了将微粒群算法应用于基于排序的组合优化问题,进行了算法设计,给出了算法的流程,提出了计算两个排列的差及由置换求微粒群算法的速度的具体操作方法。为加快算法的收敛速度,增强全局搜索能力,运用矩阵的逐行最小元法来初始化微粒群,引入了突变算子。对一些测试旅行商问题利用新算法进行了模拟仿真,结果表明算法是可行的。 Particle swarm optimization (PSO) is a new swarm intelligence simulation evolution optimum algorithm. It has a simple principle, few controlling parameters, and strong optimizing ability in continuous space. It is easy to be implemented. The applying PSO to combination optimum problems is studied based on permutation, the flow of the algorithm is proposed, the computational method of difference between two permutations is designed, the method of deriving PSO's velocity from transforms, and the detailed operations is shown. In order to increase the convergent speed and to improve the overall searching ability of the algorithm, the rule of matrix minima line-by-line to is used initiate the particle swarm, and introduces a mutation operator. Finally, the paper makes simulating computation on some testing TSP problems. The results show that the algorithm is feasible.
作者 祝成虎 彭宏
出处 《计算机工程与设计》 CSCD 北大核心 2006年第21期4025-4027,共3页 Computer Engineering and Design
基金 广东省科技攻关基金项目(A10202001) 广州市科技攻关基金项目(2004Z2-D0091)
关键词 微粒群算法(PSO) TSP问题 置换 突变算子 收敛 particle swarm optimization TSP permutation mutation operator convergence
  • 相关文献

参考文献8

二级参考文献17

  • 1[3]Yoshida H, Kawata K, Fukuyama Y et al. A particle swarm optimization for reactive power and voltage control considering voltage security[J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239. 被引量:1
  • 2[4]Soares S, Lyra C, Tavares H. Optimal generation scheduling of hydro-thermal power system[J]. IEEE Trans on Power Apparatus and Systems, 1980, 99(3): 1107-1115. 被引量:1
  • 3[5]Wu Yonggang, Ho Chunying, Wang Dingyi. A diploid genetic approach to short-term scheduling of hydro-thermal system[J]. IEEE Trans on Power Systems, 2000, 15(4): 1268-1274. 被引量:1
  • 4Barry Wilkinson, Michael Allen. Parallel programming techniques and applications using networked workstations and parallel Computes[M]. Prentice Hall, 1999. 被引量:1
  • 5Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning [J]. Physical D, 1986, 22187-204. 被引量:1
  • 6Forrest S, Hofmeyr S A. Immunology as information processing[A]. Segeland Coheneds. Design Principles for the Immune System and Other Distributed Autonomous Systems [C]. USA: Oxford University Press, 2000. 被引量:1
  • 7Jeme NK. Towards a network theory of the immune system [J].Annual Immunology, 1974, 125: 373-389. 被引量:1
  • 8Hunt JE, Cooke DE. Learning using an artificial immune system [J]. Journal of Network and Computer Applications, 1996, 19(2): 189-212. 被引量:1
  • 9Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning [J]. Physical D, 1986, 22187-204. 被引量:1
  • 10Forrest S, Hofmeyr S A. Immunology as information processing[A]. Segeland Coheneds. Design Principles for the Immune System and Other Distributed Autonomous Systems [C]. USA: Oxford University Press, 2000. 被引量:1

共引文献44

同被引文献9

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部