期刊文献+

基于随机权和的多目标进化算法 被引量:5

Multi-objective Evolutionary Algorithm Based on Random Weight-Sum Method
下载PDF
导出
摘要 在多目标进化算法理论和应用研究进展的基础上,通过采用外部群体的精英保留策略并引入拥挤距离来保持群体多样性的策略,设计了一种基于随机生成权向量的加权和函数的多目标进化算法。用所提出的方法求解若干常用的测试函数,并与NAGS-II进行比较,结果表明了算法的有效性。 On the basis of recent theory and application development of MOEAs,a new MOEA which utilizing the aggregated function of randomly generated weight vectors is presented.This proposed method adopts an external population to perform elitism and preserve diversity in the population by using the idea of crowding distance.The effectiveness of the suggested algorithm is demonstrated by performing some numerical experiments on some commonly used benchmark problems problem instances and comparing its results against NSGA-Ⅱ.
作者 林丹 赵瑞
出处 《计算机工程与应用》 CSCD 北大核心 2006年第32期4-6,163,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(70301005) 教育部南开-天津大学刘徽应用数学中心资助项目。
关键词 多目标目标进化算法 加权和方法 Pareto-最优解 Pareto-前沿 multi-objective evolutionary algorithm,weight-sum method,Pareto-optimal solution,Pareto-front
  • 相关文献

参考文献13

  • 1EIBEN A E,SMITH J E.Introduction to Evolutionary Computing[M].Berlin:Springer-Verlag,2003. 被引量:1
  • 2李敏强等著..遗传算法的基本理论与应用[M].北京:科学出版社,2002:425.
  • 3DEB K.Multi-Objective Optimization using Evolutionary Algorithms[M].Chichester:John Wiley & Sons,2001. 被引量:1
  • 4COELLO C V VELDHUIZEN L G.Evolutionary Algorithms for Solving Multi-Objective Problems[M].New York:Kluwer Academic Publishers,2002. 被引量:1
  • 5DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transaction on Evolutionary Computation,2002,6(2):181-197. 被引量:1
  • 6HAJELA P,LIN C Y.Genetic search strategies in multicriterion optimal design[J].Structural Optimization,1992,4(1):99-107. 被引量:1
  • 7JIN Y C,OLHOFER M,SENDHOFF B.Dynamic weighted aggregation for evolutionary multi-objective optimization:Why does it work and how?[C]//SPECTOR L,GOODMAN E D,WU A,eds.Proceedings of Genetic and Evolutionary Computation Conference.San Francisco:Morgan Kaufmann,2001:1042-1049. 被引量:1
  • 8JIN Y C,OKABE T,SENDHOFF B.Adapting weighted aggregation for multi-objective evolution strategies[C].//Coello C,ed.Proceedings of the First International Conference on Evolutionary Multicriterion Optimization.Berlin:Springer-Verlag,2001:96-110. 被引量:1
  • 9ISHIBUCHI H,MURATA T.A multi-objective genetic local search algorithm and its application to flowshop scheduling[J].IEEE Transactions on Systems,Man and Cybernetics,1998,28(3):392-403. 被引量:1
  • 10MURATA T,ISHIBUCHI H,TANAKA H.Multi-objective genetic algorithm and its application to flowshop scheduling[J].Computers and Industrial Engineering,1996,30(4):957-968. 被引量:1

二级参考文献8

  • 1[1]Fang K T, Wang Y. Number-Theoretic Methods in Statistics[M]. London: Chapman & Hall, 1994 被引量:1
  • 2[2]Ishibuchi H, Murata H. A mult-objective genetic local algorithm and its application to flowshop scheduling[J]. IEEE Transactions On Systems, Man and Cyberetics-Part C:Applications and Reviews, 1998, 28(3): 392-403 被引量:1
  • 3[3]Fonseca C M, Fleming P J. An overview of evolutionary algorithms for multiobjective optimization[J]. Evolutionary Computation, 1995, 3(1): 1-16 被引量:1
  • 4[4]Veldhuizen D V. Multiobjective Evolutionary Algorithms: Classifications, Analysis, and New Innovations[D]. Ph.D dissertation, Air Force Institute of Technology, Air University, USA: 1999. 22-24 被引量:1
  • 5[5]Allen A O. Probability, Statistics and Queuing Theory with Computer Science Applications[M].2nd Edition. Boston, MA: Academic Press, Inc., 1990 被引量:1
  • 6[6]Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 1-24 被引量:1
  • 7[7]Zitzler E, Deb K, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271 被引量:1
  • 8[8]Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230 被引量:1

共引文献14

同被引文献42

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部