期刊文献+

基于常用得分矩阵的神经网络法预测蛋白质的二级结构 被引量:3

Prediction of the protein secondary structure with common score matrix based neural network
下载PDF
导出
摘要 本文用常用的得分矩阵代替传统的Qian编码作为神经网络的输入层预测了200个蛋白质二级结构。结果表明:以常用得分矩阵作为输入层的预测结果要优于Qian编码的预测性能。在200个蛋白质中,共有9个蛋白质的预测精度达到目前国际先进水平,即80%。这说明该方法具有一定的可行性。 The present paper describes the artificial neural network for the prediction of the protein secondary structure on the basis of common score matrix instead of Qian code as the input layer. Based on the predicted secondary structure of 200 proteins, it was found that the performance of the score matrix was a little better than that of Qian code. Among these 200 proteins, the predicted precision of 9 proteins was superior to 80%, the well-recognized upper limit in the field of predicting the protein secondary structure. Also,there were no significant difference among results based on a variety of score matrices.
出处 《中国药科大学学报》 CAS CSCD 北大核心 2006年第5期470-473,共4页 Journal of China Pharmaceutical University
关键词 神经网络 得分矩阵 蛋白质二级结构预测 artificial neural network score matrix prediction of protein second structure
  • 相关文献

参考文献10

  • 1Eisenberg D,Weiss RM,Terwilliger TC.The helical hydrophobic moment:a measure of the amphiphilicity of a helix[J].Nature,1982,299(5 881):371 -374. 被引量:1
  • 2Chou PY,Fasman GD.Empirical predictions of protein conformation[J].Annu Rev Biochem,1978,47:251 -276. 被引量:1
  • 3Gibrat JF,Garnier J,Robson B.Further developments of protein secondary structure prediction using information theory.New parameters and consideration of residue pairs[J].J Mol Biol,1987,198(3):425 -443. 被引量:1
  • 4Levin JM,Robson B,Garnier J.An algorithm for secondary structure determination in proteins based on sequence similarity[J].FEBS Lett,1986,205(2):303 -308. 被引量:1
  • 5Qian N,Sejnowski TJ.Predicting the secondary structure of globular proteins using neural network models[J].J Mol Biol,1988,202(4):865 -884. 被引量:1
  • 6方慧生,吴梧桐,王旻,余江河,郑珩.蛋白质天然构象预测的研究进展[J].中国药科大学学报,2005,36(3):195-200. 被引量:4
  • 7Kabsch W,Sander C.Dictionary of protein secondary structure:Pattern recognition of hydrogen-bonded and geometrical features[J].Biopolymers,1983,22(12):2 577 -2 637. 被引量:1
  • 8靳蕃(Jin F),范俊波(Fan JB),谭永东(Tan YD).神经网络与神经计算机原理应用[M].成都:西南交通大学出版社,1991:146 -153. 被引量:1
  • 9Jones DT.Protein secondary structure prediction based on position-specific scoring matrices[J].J Mol Biol,1999,292(2):195 -202. 被引量:1
  • 10Guo J,Chen H,Sun Z,et al.A novel method for protein secondary structure prediction using dual-layer SVM and profiles[J].Proteins,2004,54(4):738 -43. 被引量:1

二级参考文献39

  • 1方慧生,相秉仁,安登魁.人工神经网络在蛋白质二级结构预测中的应用[J].药学进展,1996,20(1):7-11. 被引量:8
  • 2方慧生,相秉仁,安登魁.改进Madaline学习算法预测蛋白质二级结构[J].中国药科大学学报,1996,27(6):366-369. 被引量:17
  • 3Sternberg MJE,Thomton JM. Prediction of protein structure from amino acid seauence[J]. Nature, 1978,271:15-20. 被引量:1
  • 4Dandekar T, ArgosP. Folding the main-chain of small proteins with the genetic algorithm[J]. J Mol Biol, 1994,236:844-861. 被引量:1
  • 5Sen TZ, Jemigan RL, Gamier J, Kloczkowski A. GOR V server for protein secondary structure prediction [J]. Bioinformatics, 2005,21:2787-2788. 被引量:1
  • 6Needleman SB, Wunsch C. A general method applicable to the search for similarities in the amino acid sequence of two proteins[J]. J Mol Biol, 1970,45:443. 被引量:1
  • 7Smith TF, Waterman MS. Identification of comnmn molecular subsequenees[J]. J Mol Biol, 1981,147:195. 被引量:1
  • 8Lipman D,Pearson D. Rapid and sensitive protein similarity searches[J]. Science, 1985,227:1435-1441. 被引量:1
  • 9Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSIBLAST: a new generation of protein database search programs [J].Nucleic Acids Res, 1997,25:3389-3402. 被引量:1
  • 10Jones DT, Gen TD. An efficient and reliable protein fold recognition method for genomic sequences[J]. J Mol Biol, 1999,287(4):797-815. 被引量:1

共引文献3

同被引文献42

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部