期刊文献+

基于Q学习的城市交通信号灯混杂控制(英文) 被引量:4

Hybrid Control Based on Q-Learning for Urban Traffic Signal
下载PDF
导出
摘要 给出了一种单交叉口混杂交通控制器和仿真结果。首先,采用Q学习和BP神经元网络根据环境的变化决定最优的相位切换时间,然后增加一个模糊控制器决定最需要切换的相位,即决定相位次序。该方法在PARAMICS交通仿真软件中进行仿真,和定控制以及定相序控制相比,该方法具有明显的优势。 A hybrid traffic controller for an intersection and its simulation results was proposed. Firstly, a method based on Q-learning and BP neural networks was introduced to determine the optimal switching time of a certain phase in order to adapt to the varying traffic condition. Furthermore, the hybrid controller, which includes an added fuzzy controller, was provided to select the optimal phase sequence, namely, choose the optimal and the urgent phase to be switched. The performance of the system was evaluated by PARAMICS traffic simulation software, which is intuitionistic and visual. Compared with conventional fixed-time control, the validity of the method was proved. At the same time,comparing the method of fixed phase sequence with the policy of varying phase sequence, the efficiency of the hybrid control of traffic signal was indicated.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第10期2889-2894,共6页 Journal of System Simulation
基金 北京市基金(4042006) 北京工业大学校青年基金(97002011200401,97002011200501)。
关键词 Q学习 BP神经元网络 模糊控制 交通信号灯控制 Q-Learning Bp neural network fuzzy control traffic signal control
  • 相关文献

参考文献1

二级参考文献6

共引文献61

同被引文献34

  • 1王秋平,谭学龙,张生瑞.城市单点交叉口信号配时优化[J].交通运输工程学报,2006,6(2):60-64. 被引量:109
  • 2承向军,常歆识,杨肇夏.基于Q-学习的交通信号控制方法[J].系统工程理论与实践,2006,26(8):136-140. 被引量:14
  • 3陈洪,陈森发.单路口交通实时模糊控制的一种方法[J].信息与控制,1997,26(3):227-233. 被引量:61
  • 4Stuart Russell,Peter Norvig.姜哲,金奕江,等译..人工智能-一种现代方法[M]第2版..北京:人民邮电出版社,,2004..184-236.. 被引量:2
  • 5Drew Fudenberg,Jean Tirole.博弈论[M].北京:中国人民大学出版社,2003.. 被引量:1
  • 6..Nash.Nash论文集[M].北京:首都经济贸易大学出版社,2000.. 被引量:1
  • 7Binghm E. Reinforcement learning in neuro-fuzzy traffic control[J ]. European Journal of Operational Research, 2001, (131) : 232-241. 被引量:1
  • 8Roozemond J D. Using intelligent agent for pro-active, real-time urban intersection control[J]. European Journal of Operational Research,2001, (131) : 293-301. 被引量:1
  • 9Abdulhai B, Pringle R. Machine learning based adaptive signal control using autonomous Q-learning agent[C]. Proceeding of the IASTED International Conference. Intelligent Systems and Control. USA: Honolulu, Hawmi,2000. 320-327. 被引量:1
  • 10Sutton R, Barto A. Reinforcement learning: An Introduction [M]. MA: MIT Press. 1998. 被引量:1

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部