期刊文献+

分块二维主成分分析鉴别特征抽取能力研究 被引量:1

The Study of Extracting Ability of Discriminant Features for M2DPCA
下载PDF
导出
摘要 基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在ORL人脸数据库上测试了该方法的鉴别能力。实验的结果表明,M2DPCA在鉴别性能上优于通常的2DPCA和PCA方法,也优于基于Fisher鉴别准则的鉴别分析方法:Fisherfaces方法、F-S方法和J-Y方法。 Based on Two Dimensional Principal Component Analysis (2DPCA),a new technique called Modular Two Dimensional Principal Component Analysis (M2DPCA) is developed for human face recognition in this paper.First,in proposed approach,the original images are divided into smaller modular images,which are also called sub-images.Then, the well-known 2DPCA method can be directly used to the sub-images obtained from the-previous step for feature extraction,so the pattern classification can be implemented on it.The advantage of the presented way when compared with conventional PCA algorithm on original images is that the local discriminant features of the original patterns can be efficiently extracted,which are available to differentiate one class from another.To test M2DPCA and to evaluate its performance,a series of experiments will be performed on ORL human face image databases.The experimental results indicate that the performance of the new method in terms of recognition rate is obviously superior to that of ordinary 2DPCA and PCA algorithms on original images,and is superior to that of some discriminant analysis methods based on the Fisher discriminant criterion such as Fisherfaces and F-S and J-Y methods.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第27期69-72,75,共5页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60472060) 江苏省自然科学基金资助项目(编号:05KJD520036) 淮安市科技发展基金资助项目(编号:HAG05053)
关键词 线性鉴别分析 特征抽取 二维主成分分析 分块二维主成分分析 人脸识别 Linear Discriminant Analysis(LDA),feature extraction,Two Dimensional Principal Component Analysis(2DPCA) ,Modular Two Dimensional Principal Component Analysis(M2DPCA),face recognition
  • 相关文献

参考文献20

  • 1徐勇..几种线性与非线性特征抽取方法及人脸识别应用[D].南京理工大学,2004:
  • 2Wilks S S.Mathematical Statistics[M].New York:Wiley Press,1962:577~578 被引量:1
  • 3Duda R,Hart P.Pattern Classification and Scene Analysis[M].New York:Wiley Press,1973 被引量:1
  • 4Daniel L Swets,John Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996; 18 (8):831~836 被引量:1
  • 5Peter N Belhumeur,Joao P Hespanha,David J Kriengman.Eigenfaces vs Fisherfaces:Recognition using class specific linearprojection[J].IEEE Trans on Pattern Anal Machine Intell,1997;19(7):711~720 被引量:1
  • 6Cheng Jun Liu,Harry Wechsler.A shape and texture-based enhanced Fisher classifier for face recognition[J].IEEE Transactions on Image Processing,2001; 10 (4):598~608 被引量:1
  • 7Foley D H,Sammon J WJ r.An optimal set of discriminant vectors[J].IEEE Transactions on Computer,1975 ;24(3):281~289 被引量:1
  • 8Duchene J,Leclercq S.An optimal Transformation for discriminant and principal component analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988;10(6):978~983 被引量:1
  • 9Tian Q.Image classification by the Foley-Sammon transform[J].Optical Engineering,1986; 25 (7):834~839 被引量:1
  • 10Z Jin,J Y Yang,Z S Hu et al.Face Recognition based on uncorrelated discriminant transformation[J].Pattern Recognition,2001; 34 (7):1405~1416 被引量:1

二级参考文献27

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578 被引量:1
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973 被引量:1
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836 被引量:1
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720 被引量:1
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608 被引量:1
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289 被引量:1
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839 被引量:1
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983 被引量:1
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416 被引量:1
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese) 被引量:1

共引文献178

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部