期刊文献+

PU(2,1)的Kleinian子群的正规化子 被引量:1

The normalizer of discrete groups in PU(2,1)
下载PDF
导出
摘要 给出了复双曲空间上的等距群PU(2,1)的非初等的离散子群的正规化子的离散条件. Let G be a nonelementary,discrete subgroup of PU(2,1 ) and the dimension of the space spanned by all the representative vectors of the fixed points of loxodromic elements of G is 3, then the normalizer N of G is discrete in PU(2,1). We also give an example to show that the condition is necessary.
作者 黄华鹰
出处 《苏州大学学报(自然科学版)》 CAS 2006年第3期20-24,共5页 Journal of Soochow University(Natural Science Edition)
关键词 正规化子 非初等 离散 复双曲空间 normalizen nonelementary discrete complex hyperbolic space
  • 相关文献

参考文献7

  • 1BEAEDON A F.The Geometry of Discrete Groups[M].Berlin:Springer-Verlag,1983. 被引量:1
  • 2BASMAJIAN A,MINER R.Discrete subgroups of complex hyperbolic motions[J].Invent Math,1998,131:85-136. 被引量:1
  • 3MASKIT B.Kleinian Groups[M].Berlin:Springer-Verlag,1988. 被引量:1
  • 4CHEN Min.Discreteness and Convergence of Mbius Groups[J].Geometriae Dedicata,2004,104:61-69. 被引量:1
  • 5RATCLIFFE J.On the isometry groups of hyperbolic manifolds[C]// The mathematical legacy of Wilhelm Magnus,groups,geometry,and special functions.Comtemp Math,1994. 被引量:1
  • 6JIANG Y P,KAMIYA S,PAKER J R.Jфrgensen's inequality for complex hyperbolic space[J].Geometriae Dedicata,2003,97:55-80. 被引量:1
  • 7GOLDMEN W M.Complex Hyperbolic Geometry[M].Oxfor Mathematical Monographs.Oxford:Oxford University Press,1999. 被引量:1

同被引文献5

  • 1Maskit B. Kleinian Groups [ M ]. Berlin: Springer-Verlag, 1988. 被引量:1
  • 2Pekka Tukia. Convergence groups and gromov's metric hyperbolic spaces[ J]. New Zealand Journal of Mathematics, 1994,23 : 157 - 187. 被引量:1
  • 3Goldmen W M. Complex Hyperbolic Geometry[ M ]. Oxfor Mathematical Monographs. Oxford:Oxford University Press, 1999. 被引量:1
  • 4Beardon A F. The Geometry of Discrete Groups [ M ]. Berlin:Springer-Verlag, 1983. 被引量:1
  • 5黄炎.紧复双曲流形的等距群[J].苏州大学学报(自然科学版),2008,24(1):13-16. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部