摘要
如何求出以给定的λi为特征值、以已知的qi为λi对应特征向量的n阶方阵的集合是矩阵分析和系统理论的重要问题.利用Kronecker积及矩阵的广义逆作为工具对这一问题做出回答,并给出了在相应的解集合中与给定矩阵的最佳逼近解的表达式.
The question of how to look for the n- rank matrix set A which satisfy Aqu=λiqu is an important one of Matrix analysis and systems engineering. In this paper,the authors portray the matrix equation XQ=QA , attain the expression of general solution to this equation by Kronecker product and singular value decomposition and also obtain the optimal approximation solution.
出处
《湖州师范学院学报》
2006年第2期13-15,共3页
Journal of Huzhou University
关键词
广义M—P逆
奇异值分解
最佳逼近
generalized M- P inverse
singular value decomposition
optimal approximation