摘要
The structural characteristics of Re2O3 doped B2O3-Al2O3-SiO2 glasses and factors such as the component and heat-treating conditions affecting the glass structure were investigated by magic angle spin nuclear magnetic resonance (MAS NMR) spectroscopy and differential thermal analysis (DTA). It is found that, in B2O3-Al2O3-SiO2 glass, the boron (4), and Al(5), Al(6) changes to Al(4). On the other hand, compared with Ba^2+ , RE^3+ can accumulate the boron network because of its higher field strength, which results in a large network structure. With the increase of samarium oxide, the silicate coordination Qa(3T) will have predominance gradually. Heat-treatment has little effect on the boron and aluminum coordination sites in the glass structure.
The structural characteristics of Re2O3 doped B2O3-Al2O3-SiO2 glasses and factors such as the component and heat-treating conditions affecting the glass structure were investigated by magic angle spin nuclear magnetic resonance (MAS NMR) spectroscopy and differential thermal analysis (DTA). It is found that, in B2O3-Al2O3-SiO2 glass, the boron (4), and Al(5), Al(6) changes to Al(4). On the other hand, compared with Ba^2+ , RE^3+ can accumulate the boron network because of its higher field strength, which results in a large network structure. With the increase of samarium oxide, the silicate coordination Qa(3T) will have predominance gradually. Heat-treatment has little effect on the boron and aluminum coordination sites in the glass structure.
基金
Project supported by JSNSF Project (BT2004121) , Bridge Century Excellent Person Fund of Ministry of Education ,"333Project"Fund of Jiangsu Province ,JSCNSF Project Fund (03kjb430046)