摘要
应用Fourier变换求出热传导方程的基本解,分析了基本解与正态分布密度函数的关系,从而借助密度函数解释热传导方程解的性质.
The elementary solution to Cauchy problem of heat equation is given by applying Fourier transformation. The relation of elementary solution and density function of normal distribution is discussed, and the characteristic of solution to Cauchy problem of heat equation is explained by density function.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2006年第3期15-18,共4页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金(10271030)
关键词
FOURIER变换
热传导方程
基本解
正态分布
Fourier transformation
heat equation
elementary solution
normal distribution