期刊文献+

热传导方程的基本解与正态分布密度函数 被引量:3

Elementary Solution to Heat Equation and Density Function of Normal Distribution
下载PDF
导出
摘要 应用Fourier变换求出热传导方程的基本解,分析了基本解与正态分布密度函数的关系,从而借助密度函数解释热传导方程解的性质. The elementary solution to Cauchy problem of heat equation is given by applying Fourier transformation. The relation of elementary solution and density function of normal distribution is discussed, and the characteristic of solution to Cauchy problem of heat equation is explained by density function.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2006年第3期15-18,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(10271030)
关键词 FOURIER变换 热传导方程 基本解 正态分布 Fourier transformation heat equation elementary solution normal distribution
  • 相关文献

参考文献5

二级参考文献8

  • 1Varopoulos N.Small time Gaussian estimate of heat diffusion kernels.Part 1:The semigroup technique[J].Bull Sci Math,1989,113:253-277. 被引量:1
  • 2Hebey E.Optical Sobolev inequalities on complete Riemanian manifolds with Ricci curvature bounded below and positive injectivity radius[J].Amer J Math,1996,118:291-300. 被引量:1
  • 3Petersen P,Wei G.Relative volume comparison with integral curvature bounds[J].Geom funct Anal,1997,7:1031-1045. 被引量:1
  • 4Petersen P,Sprouse C.Integral curvature bounds,distance estimate and applications[J].J Diff Geom,1998,50:269-298. 被引量:1
  • 5Petersen P,Wei G.Analysis and geometry on manifolds with integral Ricci curvature bounds II[J].Trans Amer Math Soc,2000,353 (2):457-478. 被引量:1
  • 6Yang D.Convergence of Riemannian manifolds with integral bounds on curvature I[J].Ann Scient Ecole Norm Sup,1992,25(4):77-105. 被引量:1
  • 7Isaac Chavel.Riemannian Geometry:A Modern Introduction[M].Cambridge University Press,2000. 被引量:1
  • 8Thierry Aubin.Nonlinear analysis on manifolds,Monge-Ampère equations[M].Springer -Verlag,1982. 被引量:1

共引文献2

同被引文献18

  • 1XIA ShaoJun,CHEN LinGen & SUN FengRui Postgraduate School,Naval University of Engineering,Wuhan 430033,China.Entransy dissipation minimization for liquid-solid phase change processes[J].Science China(Technological Sciences),2010,53(4):960-968. 被引量:41
  • 2程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产[J].工程热物理学报,2005,26(6):1034-1036. 被引量:56
  • 3过增元,梁新刚,朱宏晔.(火积)——描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296. 被引量:118
  • 4Adams R A. Sobolev Spaces [M]. New York: Academic Press, 1975, 112 -116. 被引量:1
  • 5Li Fushan, Bai Yuzhen. Uniform Rates of Decay for Nonlinear Viscoelastic Marguerre - yon Karman Shallow Shell System, [ J]. J Math Anal Appl, 2009, 351 : 522-535. 被引量:1
  • 6Li Fushan. Existence and uniqueness of the solution to the the viscoelastic equations for Koiter shells [ J ]. Appl Math Comput, 2008, 200: 407-412. 被引量:1
  • 7Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation [ J ]. SIAM J Control Optim, 2003, 42(4) : 1310-1324. 被引量:1
  • 8Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping [ J ]. Electron J Differential Equations, 2002, 44 : 1-14. 被引量:1
  • 9Salim A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source[ J ]. Nonlinear Analysis, 2008, 69(8): 2589-2598. 被引量:1
  • 10Mohammad Kafini, Salim A Messaoudi. A blow up result in a Cauchy viscoelastic problem[ J]. Applied Math Letters, 2008, 21 : 549-553. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部