摘要
基于风载非Gauss模型推导了Davenport谱下结构脉动风载的五阶统计矩表达。通过响应概率特征函数和Fourier变换,求得Gram-Charlier级数形式的振形位移和速度响应联合概率统计分布。利用Rice公式和Poisson假设,研究了不同风载模型对高耸结构风振可靠性分析结果的影响。算例分析表明:高耸结构风振可靠性分析需要采用风载非Gauss模型;模态位移和速度响应的联合概率统计分布在截断于五阶Hermite多项式时具有较好精度;可以引入模态位移与速度独立性假设以简化高耸结构风振可靠性分析,计算结果是偏于安全的。
With special reference to the non-Gaussian model of wind-load, the statistical moments of fluctuating wind forces until the 5^th order are deduced for Davenport spectrum. The probabilistic characteristic function and Fourier transformation are employed to evaluate the joint statistical distribution of modal responses, which has the form of Gram-Charlier series. Based on Rice formula and Poisson assumption, the effects of both wind-load models on the reliability analysis of high-rise slender structures are discussed. An example demonstrates that the reliability analysis of high-rise slender structures requires the non-Gaussian model of wind load. The 5^th order Hermite series is recommended for describing the joint statistical distribution with the purpose of higher accuracy. It is acceptable to assume the statistical independence between the modal displacement and its derivative for simplified analysis, with the failure probability slightly overestimated.
出处
《工程力学》
EI
CSCD
北大核心
2006年第7期81-86,共6页
Engineering Mechanics
基金
国家自然科学基金项目(50178052)
重庆市自然科学基金项目(7422)
关键词
高耸结构
可靠性
非Gauss
联合概率
统计分布
HERMITE
耦合矩
特征函数
动力响应
high slender structure
reliability
non-Gaussian
joint PDF
statistical distribution
Hermite
coupling moment
characteristic function
dynamic response