期刊文献+

基于信息熵的标称变量聚类算法研究 被引量:2

Clustering algorithm of nominal data based on entropy
下载PDF
导出
摘要 通过对标称数据的分析,提出了一种基于信息熵和层次聚类思想的标称数据聚类算法。算法采用信息熵度量对象之间的相似性,通过数据直接计算相似性阈值。实验证明算法是可行并且有效的。 Through analyzing the characteristics of nominal data, clustering algorithm of nominal data based on entropy and hierarchical method was proposed. In this algorithm, similarity between objects was measured by using entropy and similarity threshold was calculated directly by using data. The experimental results show that this algorithm is feasible and effective.
作者 王燕
出处 《计算机应用》 CSCD 北大核心 2006年第8期1904-1905,共2页 journal of Computer Applications
关键词 信息熵 聚类 标称变量 entropy clustering nominal data
  • 相关文献

参考文献6

  • 1HUANG ZX.Extensions to the k-means algorithm for clustering large data sets with categorical values[J].Data Mining and knowledge discovery,1998,2(3):283-304. 被引量:1
  • 2DAVID G,KLEUBBERG J.Clustering categorical data:an approach based on dynamical systems[A].Proceedings of the 24th VLDB Conference[C].1998.392 -403. 被引量:1
  • 3GUHA S,RASTOGI R.ROCK:A Robust Clustering Algorithm for Categorical Attributes[A].Proceedings of the 15th international conference on data engineering[C].1999,512 -521. 被引量:1
  • 4GANTI V,GEHRKE J.Cactus-clustering categorical data using summaries[A].Proceedings of ACM SIGKDD[C].1999.73-83. 被引量:1
  • 5张猛,王大玲,于戈.一种基于自动阈值发现的文本聚类方法[J].计算机研究与发展,2004,41(10):1748-1753. 被引量:16
  • 6WANG BB,MCKAY RI.A comparative study for domain ontology guided feature extraction[A].Proceedings of 26th australian computer science conference[C].2003.69-78. 被引量:1

二级参考文献8

  • 1J MacQueen. Some methods for classification and analysis of multivariate observation. In: Proc of the 5th Berkeley Symp Math Statist and Prob 1. California; University of California Press,1967. 281~297 被引量:1
  • 2L Kaufman, P J Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons,1990 被引量:1
  • 3M Ankerst, M M Breunig, H P Kriegel, et al. OPTICS:Ordering points to identify the clustering structure. In: Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data (SIGMOD' 99). New York: ACM Press, 1999. 164~169 被引量:1
  • 4A Hotho, G Stumme. Conceptual clustering of text clusters.FGML Workshop, Hannover, 2002 被引量:1
  • 5D S Modha, W S Spangler. Feature weighting in k-means clustering. Machine Learning, 2003, 52(3): 217~237 被引量:1
  • 6F Beil, M Ester, X Xu. Frequent term-based text clustering. In:Proc of 2002 Int Conf Knowledge Discovery and Data Mining.New York: ACM Press, 2002. 436~442 被引量:1
  • 7B B Wang, R I McKay, Hussein AAbbass, etal. A comparative study for domain ontology guided feature extraction. In: Proc of 26th Australian Computer Science Conference (ACSC2003).Darlinghurst, Australia: Australian Computer Society Inc, 2003.69~ 78 被引量:1
  • 8苏中,马少平,杨强,张宏江.基于Web-Log Mining的Web文档聚类[J].软件学报,2002,13(1):99-104. 被引量:29

共引文献15

同被引文献20

  • 1Lin Zhu,Chung Fu-lai,Wang Shi-tong.Generalized fuzzy C-Means clustering algorithm with improved fuzzy partitions[J].IEEE Transactions on Systerms,2009,39(3):578-591. 被引量:1
  • 2Yu Jian,Yang Miin-shen.A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis[J].IEEE Transactions on Fuzzy Systerms,2007,15(5):904-915. 被引量:1
  • 3Hwang C,Rhee F C.Uncertain fuzzy clustering:interval type-2 fuzzy approach to c-means[J].IEEE Transcations on Fuzzy Systerms,2007,15(1):107-120. 被引量:1
  • 4黄竞伟,等.计算智能[M].北京:科学出版社,2010. 被引量:6
  • 5Yeung D Y, Chang H. Extending the Relevant Component Analysis Algorithm for Metric Learning Using Both Positive and Negative Equivalence Constraints [J]. Pattern Recognition, 2006, 39(5).. 1007-1010. 被引量:1
  • 6Basu S, Banerjee A, Mooney R J. Active Semi-supervision for Pairwise Constrained Clustering [C]//Proceedings of the 2004 SIAM International Conference on Data Mining. Lake, Florida.. [s. n. ], 2004.. 333-344. 被引量:1
  • 7Grira N, Crucianu M, Boujemaa N. Active Semi-supervised Fuzzy Clustering [J]. Pattern Recognition, 2008, 41(5) :1834-1844. 被引量:1
  • 8ZHANG Huaxiang, LU Jing. Semi-supervised Fuzzy Clustering.. A Kernel-Based Approach [J]. Knowledge- Based Systems, 2009, 22(6): 477-481. 被引量:1
  • 9Bouchaghia A, Pedrycz W. Enhancement of Fuzzy Clustering by Mechanisms of Partial Supervision [J]. Fuzzy Sets and Systems, 2006, 157(13).. 1773-1779. 被引量:1
  • 10Bogus P, Merkisz J. Misfire Detection of Locomotive Diesel Engine by Non-linear Analysis [J].Mechanical Systems and Signal Processing, 2005, 19(4): 881-889. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部