期刊文献+

基于PCA与ICA的结构损伤识别 被引量:4

Structural Damage Identification Based on PCA and ICA
下载PDF
导出
摘要 在分析主成分分析PCA和独立分量分析ICA的基础上,建立了基于PCA和ICA的结构损伤识别构架。利用它们对结构损伤信号进行特征提取,并将提取的特征作为3层BP神经网络的输入,以实现对结构损伤的识别。这2个模型通过British Columbia大学IASC-ASCE SHM任务组提供的用于验证分类正确性的结构基准数据集合进行测试。结果显示:PCA和ICA都能降低信号中噪音的影响,并对特征进行有效提取;基于ICA的模型比基于PCA的模型预测更准确。 The architecture of structural damage identification based on PCA and ICA was constructed after analyzing PCA and ICA. It can effectively extract structural features from structural damage signals, and apply them as the input to an artificial neural network, which consists of three layers BP neural network for structural damage identification. Then, it was tested by the benchmark dataset from IASC-ASCE SHM group in British Columbia University. The results show that both PCA model and ICA model can reduce the influence from noise, and correctly extract structural features from the structural damage signals; ICA model predicts more accurately than PCA model.
作者 钟珞 宋华珠
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2006年第7期93-96,共4页 Journal of Wuhan University of Technology
基金 教育部高校行动计划项目(2004XD-03)
关键词 主成分分析 独立分量分析 结构损伤识别 特征提取 人工神经网络 principal component analysis (PCA) independent component analysis (ICA) structural damage identification feature extraction artificial neural network
  • 相关文献

参考文献5

  • 1钟珞,袁景凌,楼梦麟,陈建勇.结构模型实验的计算机动态模拟实现构架[J].武汉理工大学学报,2002,24(3):14-17. 被引量:5
  • 2Han Jiawei,Kamber Micheline.Data Mining:Concepts and Techniques,the Morgan Kaufmann Series in Data Management Systems[M].Jim Gray:Series Editor Morgan Kaufmann Publishers,2000. 被引量:1
  • 3Song Huazhu,Zhong Luo,Han Bo.Structural Damage Detection by Integrating Independent Component Analysis and Support Vector Machine[A].ADMA 2005[C].Wuhan:Springer LNAI(3584),2005.670-677. 被引量:1
  • 4Song Huazhu,Zhong Luo,Moon Franklin.Structural Damage Detection by Integrating Independent Component Analysis and Artificial Neural Networks[A].MLMTA' 05[C].Las Vegas:CSREA Press,2005.190-196. 被引量:1
  • 5ASCE.Structural Health Monitoring[EB/OL].http://wusceel.cive.wustl.edu/asce.shm/benchmarks.htm,2003-07-19. 被引量:1

二级参考文献3

共引文献4

同被引文献20

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部