期刊文献+

基于交叉覆盖算法的改进算法—最近邻交叉覆盖算法

Improving Algorithms Based on Alternative Covering Algorithm: Nearest Neighbor Alternative Covering Algorithm
下载PDF
导出
摘要 交叉覆盖算法分类时着重在于两类的交界部分,混杂在另外一类中往往无助于提高分类器的效率,反而会增加分类器的计算负担。本文提出一种基于交叉覆盖算法的最近邻交叉覆盖算法(NN-ACA):对进行训练的原始样本数据进行预处理,删除这些不同类的最近邻点,得到精简后的样本集,再对该样本集使用交叉覆盖算法。文章在介绍算法的同时,给出了相关实验数据,并对其和SVM进行了讨论,结果表明NN-ACA在一定的样本规模表现了速度和分类正确性上的优越性。 Alternative covering algorithm focuses on the samples near the boundary in training time , and those samples intermixed in another class are usually no good to improve the classifier's performance instead they may greatly increase the burden of computation. This paper gives a new algorithm-Nearest Neighbor Alternative Covering Algorithm based on Alternative covering algorithm(NN-ACA). The new algorithms deal with data as following. Firstly, it preprocesses the samples by deleting the sample which has different class nearest neighbor. Secondly, the scaled samples are trained and tested by alternative covering algorithm. The result of experiment and discussion about the new algorithm and SVM are given by the paper. All of these are show that the new algorithm is better than alternative covering algorithm in speed and accuracy of classification of moderate size and dimension samples.
作者 钱付兰 张媛
出处 《北京电子科技学院学报》 2007年第2期88-90,84,共4页 Journal of Beijing Electronic Science And Technology Institute
关键词 交叉覆盖 最近邻 分类 alternative covering nearest neighbor classification
  • 相关文献

参考文献5

二级参考文献13

  • 1张铃,张钹.多层反馈神经网络的FP学习和综合算法[J].软件学报,1997,8(4):252-258. 被引量:24
  • 2Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28. 被引量:1
  • 3Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467. 被引量:1
  • 4Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999. 被引量:1
  • 5Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999. 被引量:1
  • 6Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201. 被引量:1
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. 被引量:1
  • 8Chen Q C,Neural Networks,1994年,5卷,7期,1477页 被引量:1
  • 9Baum E B,Neural Information Processing,1991年,904页 被引量:1
  • 10张铃,张钹.M-P神经元模型的几何意义及其应用[J].软件学报,1998,9(5):334-338. 被引量:135

共引文献320

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部