摘要
对样本点为N=2γ的离散傅里叶变换,按照库利ˉ图基按时间抽取的方法,得到一组等价的迭代方程,对方程中对偶结点对的性质作了详细分析,由此简化了方程中的计算公式.与直接计算相比,大大减少了运算次数,并且计算过程中除了N个初始数据所占的存储单元外,不需再设置其他存储单元.
According to Cooley-Tukey decimation in time, a set of equivalent iteration equations can be obtained in regard to the discrete Fourier transorm of the sample point N = 2^γ. Elaborate analysis on characteristics of the dual node pairs in the equation thereout simplifies its calculational formula. In comparison with direct operation, this method greatly reduces its degree of operation. Besides, no more settings are needed on storage cells except those occupied by N times initial data in the calculation process.
出处
《上海电力学院学报》
CAS
2006年第2期192-194,共3页
Journal of Shanghai University of Electric Power
关键词
快速傅里叶变换
离散傅里叶变换
对偶结点对
运算次数
fast Fourier transform
discrete Fourier transform
dual node pair
degree of operation