期刊文献+

粗糙集规则获取在旋转注水机组故障诊断中的应用 被引量:3

RULES ACQUISITION BASED ON ROUGH SET FOR ROTATING WATER INJECTION MACHINERY FAULT DIAGNOSIS
下载PDF
导出
摘要 粗糙集理论能够有效地处理不精确、不完整的数据和知识,并从中发现隐含知识,提示潜在规律。提出一种基于粗糙集理论的大型旋转机械故障诊断和知识获取模型。该模型从包含冗余和不一致信息的原始数据出发, 构建决策表,通过属性约简和基于分明矩阵的属性值约简获取故障诊断的最小约简属性集和诊断规则,并建立诊断规则知识库。基于该模型以某旋转注水机组故障分析为例,从来自实际的经验数据获取旋转注水机组转子故障诊断的规则知识,其属性约简率可达25%,并能有效解决旋转注水机组故障诊断中规则获取的知识冗余或缺失问题,验证了其有效性。 Rough set method is good for dealing with the knowledge under the condition of imprecise and inconsistent information to acquire hidden knowledge and principle. A model of the fault diagnosis and decision rules acquisition for large rotating machinery based on Rough set is put forward. According to the inconsistent and redundant original information, the decision table is formed and the fault attributes are reduced based on Rough set theory. The attributes' value is reduced by Showron discernibility matrix. Finally the minimum reduced attributes set and diagnosis rules database are established. This model is used for a rotating water injection machinery rules acquisition in practice. The original rough information is reduced to get the fault rules with 25% attributes' reducing rate for the rotating water injection machinery. Its validity is proved.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第B05期135-138,共4页 Journal of Mechanical Engineering
基金 国家自然科学基金(50375017)北京市自然科学基金(3042006)北京市重点实验室基金(030314)资助项目。
关键词 旋转注水机组 故障诊断 规则获取 粗糙集 Rotating water injection machinery set Fault diagnosis Rules acquisition Rough set
  • 相关文献

参考文献3

二级参考文献6

共引文献37

同被引文献19

  • 1耿志强,朱群雄.基于粗糙神经网络的故障诊断方法研究与应用[J].计算机应用,2003,23(z2):194-196. 被引量:4
  • 2申桂香,陈炳锟,张英芝,薛玉霞.基于熵值-模糊综合评判的可靠性模型优选[J].吉林大学学报(工学版),2008,38(S2):117-121. 被引量:8
  • 3唐勇,王益群,姜万录.基于粗糙集神经网络的液压伺服系统故障诊断模型的研究[J].液压与气动,2005,29(6):20-22. 被引量:1
  • 4屈梁生,孟健.机械故障诊断技术与当代前沿科学[C]//中国机械工程学会设备维修分会1995年会论文集,武汉,1995:9-34. 被引量:1
  • 5VENKAT Venkatasubramanian,RAGHUNATHAN Rengaswamy,KEWEN Yin,et al.A Review of Process Fault Detection and Diagnosis Part I:Quantitative Model-based Methods[J].Computers and Chemical Engineering,2003,27(3):293-311. 被引量:1
  • 6ZHAI Lian-Yin,KHOO Li-Pheng,FOK Sai--heong.Knowledge Acquisition and Uncertainty in Fault Diagnosis:a Rough Sets Perspective[C]//T.Evangelos,F.Giovanni (eds.).Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques,Springer US,2006,6:359-394. 被引量:1
  • 7PAWLAK Z.Theorize with Data Using Rough Sets[J].Proceedings-IEEE Computer Society's International Computer Software and Applications Conference,2002:1125-1128. 被引量:1
  • 8PAWLAK Z.Flow Graphs and Intelligent Data Analysis[J].Fundamenta Informaticae,2005,64(1-4):369-377. 被引量:1
  • 9PAWLAK Z.Decision Trees and Flow Graphs[C]// Lecture Notes in Computer Science (Rough Sets and Current Trends in Computing-5th International Conference),2006:1-11. 被引量:1
  • 10Martin T. Hagan, Howard B. Demuth, Mark H. Beale. Neural Network Design [ M ]. Beijing:China Machine Press,2002. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部