期刊文献+

二维非连续边界元分析积分计算的精确表达式

Closed-formed Expressions for Accurate Evaluation of Integrals Associated with Two-dimensional Boundary Integral Equation for Two-dimensional Elastostatics
下载PDF
导出
摘要 以二维弹性力学问题为研究对象,采用线性非连续元离散边界积分方程,给出了系数矩阵计算的精确表达式,对二维弹性力学问题进行了数值计算,对非连续边界元配位点对计算结果精度的影响进行了讨论,结果表明准奇异积分计算是配位点影响计算结构精度的主要因素。 In this paper, linear discontinuous boundary element is employed to discretize boundary integral equation of two-dimensional elastostatics. The closed-formed expressions are derived for accurate evaluation of both singular and nonsingular integrals associated with boundary element analysis, and are employed for the numerical implementation of both two-dimensional potential and elastostatics problems. By comparison with the conventional procedure for numerical integration scheme, i.e. Gauss quadrature rules, the optimum collocation points for discontinuous boundary element analysis is evaluated. The numerical implementation shows that the optimum collocation factor of discontinuous boundary elements is greatly influenced by the accuracy of the integral computation, especially the nearly singular integrals, which cannot be accurately computed by conventional Gauss quadrature rules.
出处 《石家庄铁道学院学报》 2006年第2期47-50,共4页 Journal of Shijiazhuang Railway Institute
关键词 非连续边界元 精确表达式 准奇异积分 配位因子 discontinuous boundary element accurate expressions nearly singular integrals collocation facto
  • 相关文献

参考文献7

  • 1Brebbia C A.The boundary element method for engineers[M].London:Pentech Press,1978.1~128 被引量:1
  • 2Patterson C,Sheikh M A.Interelement continuity in boundary element method[A].C A Brebbia.Topics in Boundary Element Research.Vol.1[C].Berlin:Springer-Verlag,1984:123~141 被引量:1
  • 3Brebbia C A.BEASY User Manual[M].Southampton:Computational Mechanics Publication,1988.1~135 被引量:1
  • 4Xu J M,Brebbia C A.Optimum positions for the nodes in discontinuous boundary elements[A].M Tanaka,C A Brebbia.Proc.8th Int.Conference on boundary Element Method Vol.II[C].Berlin:Springer-Verlag,1986:751~767 被引量:1
  • 5Manolis G D,Banerjee P K.Conforming versus noncomforming boundary elements in three dimensional elastostatics[J].Int.J.Numer.Meth.Engng,1986,23:1 885~1 904 被引量:1
  • 6张效松,叶天麒.非连续边界元积分的精确表达式及相关问题[J].应用力学学报,2001,18(1):145-148. 被引量:6
  • 7Felippa CA,Alexander S.Membrane triangles with corner drilling freedoms Ⅲ.implementation and performance evaluation[J].Finite Elements in Analysis & Design,1992,12:203~249 被引量:1

二级参考文献2

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部