期刊文献+

基于粗糙集理论的免疫系统设计与实现

Design and Implementation of Artificial Immune System Based on the Theory of Rough Set
下载PDF
导出
摘要 文章在深入分析免疫系统的基础上,提出了一种针对系统调用序列的高效低负的异常检测方法,该方法借助粗糙集理论分析进程正常运行时产生的系统调用序列,提取最简的预测规则模型。与其他方法相比,用粗糙集理论建立正常模型要求的训练数据获取简单,生成的小规则集利于实时检测,能更有效地检测进程的异常运行状态。具有这样免疫特性规则模型可以在局部和全局不同层次上检测入侵攻击,具有较好的自适应性、可扩展性和智能性。实验证明该方法的检测效率明显优于其他建模方法。 A high-efficient and low-loading abnormal detecting method aiming at system calls sequences based on complete analyzing the immunity theory is put forward.The method by using the rough set theory analyzes the system calls sequences created by the normal running processes;and extracts a set of forecasting rules model with the minimum size.Compared with other methods,there are some merits using the Rough set theory to create the normal model.Namely,it is simple to get the training data,the small rule set is advantage to real-time detection,and the process' abnormal running state can be detected out effectively.The rules modules with the trait of immunity can detect intrusion attack in part and the whole network.These modules have better adaptability,expansibility and intelligence. Experiment results show that the efficiency of the method in this paper is obviously better than other methods.
作者 王丽君 高超
出处 《计算机工程与应用》 CSCD 北大核心 2006年第16期129-133,199,共6页 Computer Engineering and Applications
关键词 免疫系统 入侵检测 粗糙集理论 系统调用序列 immune system, intrusion detection, rough set theory, system call sequences
  • 相关文献

参考文献9

  • 1S Forrest,S A Hofmeyr,A Somayaji et al.A Sense of Self for Unix Processes[C].In:Proceedings of the IEEE Symposium on Security and Privacy, 1996:120-128 被引量:1
  • 2S A Hofmeyr,S Forrest et al.Intrusion Detection Using Sequences of System Calls[J].Jouranl of Computer Security, 1998; 6: 151-180 被引量:1
  • 3C Warrender et al.Detecting Intrusions Using System Calls:Alternative Data Models[C].In:Proceedings of the 1999 IEEE Symposium on Security and Privacy,1999-05 被引量:1
  • 4David Wagncr,Paolo Soto.Mimicry Attack on Host-based Intrusion Detection system[C].In:Proc Ninth ACM Conference on Computer and Communications Security ,2002 被引量:1
  • 5W Lee,S Stolfo,P Chan.Learning Patterns From Unix Process Execution Traces For Intrusion Detection[C].In:Proceedings of AAAI97 Workshop on AI Methods in Fraud and Risk Management,1997:50-56 被引量:1
  • 6Gaurav Tandon,Philip Chan.Leaming Rules From System Call Arguments and Sequences for Anomaly Detection[C].In:ICDM Workshop on Data Mining for Computer Security(DMSEC),2003:20-29 被引量:1
  • 7Asaka M,Onabuta T,Inoue T et al.A new intrusion detection method based on discriminant analysis[J].IEICE Transaction on Information and Systems,2001;E84D(5):570-577 被引量:1
  • 8Pawlak Z.Rough Sets-Theoretical Aspect of Reasoning about Data[M].Dordrecht:Kluwer Academic Publishers,1991 被引量:1
  • 9http://www.cs.num.edu/-immsec/ 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部