期刊文献+

监控污水处理过程运行状态的加权支持向量机方法 被引量:2

Weighted Support Vector Machine for Operation Monitoring of Wastewater Treatment Processes
下载PDF
导出
摘要 针对污水处理过程运行状态监控中的正常运行状态样本数多而异常运行状态样本数少的特点,提出加权支持向量机方法。在理论上推导出不同类别的权重满足一定的关系时可以有效地补偿各类别训练样本数不均衡导致的不利影响,从而提高对异常运行状态的检出精度。通过实验仿真说明该方法的有效性。 Faced with the fact that training samples belonging to normal operation status are much more than ones belonging to abnormal operation status, the weighted support vector machine is presented. When the weights of penalty parameter for different class satisfy a relation equation, the undesirable effect caused by the unbalanced training class sizes is compensated, and classification accuracy of abnormal operation status is improved. Simulated experiments show the method is effective.
出处 《化工自动化及仪表》 EI CAS 2005年第1期18-20,共3页 Control and Instruments in Chemical Industry
关键词 污水处理过程 支持向量机 运行状态监控 分类 wastewater treatment process support vector machine (SVM) operation monitoring classification
  • 相关文献

参考文献5

  • 1Rosen C, Lennox J A. Multivariate and Multiscale Monitoring of Wastewater Treatment Operation [ J ]. Water Research, 2001,35(14) :3402-3410. 被引量:1
  • 2Bejar J, Cortes U, Sanchez M, et al. Applying Domain Knowledge to the Discovery of Operating Situation in Wastewater Treatment Plants [ A ]. Proceeding of Intelligent Information Systems[ C ]. 1997. 360-364. 被引量:1
  • 3Sanchez M, Cortes U, Bejar J. Concept Formation in WWTP by Means of Classification Techniques:a Compared Study [ J ]. Applied Intelligence, 1997,7 (2): 147-165. 被引量:1
  • 4Vapnik V N. The Nature of Statistical Learning [ M ]. Berlin:Springer, 1995. 被引量:1
  • 5Chew H G,Crisp D J,Bogner R E,et al. Target Detection in Radar Imagery Using Support Vector Machines with Training Size Biasing[ A]. Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision[ C]. Singapore, 2000. 被引量:1

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部