期刊文献+

Effect of Cerium on Gas Evolution Behavior of Pb-Ca-Sn Alloy 被引量:7

Effect of Cerium on Gas Evolution Behavior of Pb-Ca-Sn Alloy
下载PDF
导出
摘要 The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L^-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage. Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy. The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode. The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction. All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy. It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery. The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L^-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage. Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy. The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode. The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction. All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy. It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期232-237,共6页 稀土学报(英文版)
基金 ProjectsupportedbyInnovationFundforSmallTechnologyBasedFirmsofNationalScienceandTechnologyAdministration(03C26216111166)
关键词 cyclic voltammetry AC impedance Pb-Ca-Sn-Ce alloy rare earths cyclic voltammetry AC impedance Pb-Ca-Sn-Ce alloy rare earths
  • 相关文献

同被引文献98

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部