期刊文献+

应力约束全局化策略下的连续体结构拓扑优化 被引量:18

TOPOLOGICAL OPTIMIZATION OF CONTINUUM STRUCTURE UNDER THE STRATEGY OF GLOBALIZATION OF STRESS CONSTRAINTS
下载PDF
导出
摘要 利用Mises强度理论,提出了应力约束全局化策略,将局部的应力约束问题转化为结构整体的应变能约束问题.基于ICM(独立、连续、映射)方法,引入了独立、连续的拓扑变量,对单元重量、单元刚度和单元许用应力的过滤函数进行了选择,建立了以重量为目标,以结构应变能代替应力约束的多工况下连续体结构拓扑优化模型,寻找到了多工况下的最佳传力路径.运用对偶二次规划方法对上述优化模型进行了求解.另外,利用PCL语言,在MSC/PATRAN的开发平台上,实现了应用应力约束全局化策略进行连续体结构拓扑优化的模块化处理.数值算例表明了该方法的可行性和有效性. Since the stress is a local quantity, a large number of constraints must be considered in the topology optimization of continuum structure. This increases the computational complexity of both the optimization algorithm and sensitivity analysis. A strategy with globalization of stress constraints is proposed based on yon Mises' yield criterion. The local stress constraints of element are transformed into the global strain energy constraints of structure. Based on ICM (Independent, Continuous, Mapping) method, independent continuous topological variables are introduced; a suitable set of Filter functions of element with respect to weight, allowable stress and stiffness is selected. The optimal topology model of continuum structure is established with weight as objective and subjected to strain energy constraints with multiple load cases. The best path transmitted force in the multiple load cases is selected successfully. Furthermore, the dual quadratic programming is applied to solve the optimal model of continuum. In addition, the present optimal model and its algorithm have been implemented by means of the MSC/Patran software platform using PCL (Patran Command Language). Numerical examples indicate that the method is efficient.
出处 《力学学报》 EI CSCD 北大核心 2006年第3期364-370,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10472003)北京市自然科学基金(3042002)北京市教委(KM200410005019)资助项目和美国MSC公司支持的课题.
关键词 结构拓扑优化 应力约束全局化 ICM方法 连续体 多工况 structural topological optimization, global stress constraints, ICM method, continuum structure, multiple load cases
  • 相关文献

参考文献14

  • 1Kirsch U,Taye S.On optimal topologies of grillage structures.Engineering.Computations,1986,1:229-243 被引量:1
  • 2Bendsoe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,71(1):197-224 被引量:1
  • 3Mlejnek HP,Schirrmacher.An engineer's approach to optimal distribution and shape finding.Computer Methods in Applied Mechanics and Engineering,1993,106(1/2):1-26 被引量:1
  • 4Eschenauer HA,Olhoff N.Topology optimization of continuum structures:A review.Applied Mechanics Review,2001,54(4):331-389 被引量:1
  • 5Yang R J,Chuang CH.Optimal topology design using linear programming.Computers and Structures,1994,52(2):265-275 被引量:1
  • 6隋允康著..建模·变换·优化 结构综合方法新进展[M].大连:大连理工大学出版社,1996:435.
  • 7隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报,2000,32(2):171-179. 被引量:83
  • 8隋允康,于新.平面膜结构拓扑优化的有无复合体方法[J].力学学报,2001,33(3):357-364. 被引量:28
  • 9Sui YK.ICM method of topological optimization for truss,frame,continuum structure.WWCSMO-4,June 4-8 2001,Dalian 被引量:1
  • 10Rozvany GIN.Stress ratio and compliance based methods in topology optimization-A critical review.Structural and Multidisciplinary Optimization,2001,21(2):109-119 被引量:1

二级参考文献22

  • 1程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:85
  • 2Rong JH, Xie YM, Yang XY, et al. Topology optimization of structures under dynamic response constriants. Journal of Sound and Vibration, 2000, 234(2): 177-189. 被引量:1
  • 3Rong JH, Xie YM. Yang XY. An improved method for evolutionary structural optimization against buckling. J Computers & Structures, 2001, 79:253,-263. 被引量:1
  • 4Xie YM. Steven GP. Evolutionary Structural Optimization.London: Springer-Verlag Limited, 1997. 被引量:1
  • 5Kim H, Querin QM, Sgeven GP, eg al. Development of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimization. In: Proceedings of the Australian Conference on Structural Optimization, Sydney,1998. 241-249. 被引量:1
  • 6Querin OM, Young V, Steven GP, et al. Computational efficiency and validation of bi-directional evolutionary structural optimization. Computer Methods in Applied Mechanics and Engineering, 2000, 189:559-573. 被引量:1
  • 7Li Q, Steven GP, Xie YM. On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization, Structural Optimization, 1999, 18(1): 67-73. 被引量:1
  • 8Yang R J,Struct Opt,1995年,9卷,245页 被引量:1
  • 9Yang R J,Comput Struct,1994年,52卷,2期,265页 被引量:1
  • 10程耿东,Eng Optim,1992年,20卷,129页 被引量:1

共引文献175

同被引文献187

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部