期刊文献+

一种纸币识别方法研究 被引量:9

Paper Currency Recognition Using Gaussian Mixture Models Based on Structural Risk Minimization
下载PDF
导出
摘要 快速准确的纸币清分在银行业中具有非常重要的意义。清分系统包括纸币图像采集、图像预处理、特征提取及分类器设计等几个步骤,其中分类器设计是核心技术基础。论文提出了一种用于高速纸币清分的人民币识别方法,该方法基于整张纸币的特征提取,采用了基于结构风险最小化的高斯混合模型(GMM)设计识别分类器。实验结果表明,提出的方法取得了较高的识别率。 It is important to classify the paper currency at banks quickly and correctly.The system of paper currency recognition includes image eolleetion,preproeessing,feature extraction and classifier design.A critical step is the classifier design.A real time paper currency recognition method is proposed in this paper,which extracts the features based on the whole paper eurreney.A modified GMM is constructed for the Chinese paper currency recognition.The experiments show that GMM which employs structural risk minimization is a more flexible alternative and lead to improved results for Chinese paper currency recognition.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第13期209-212,共4页 Computer Engineering and Applications
关键词 图像识别 特征提取 高斯混合模型 结构风险最小化 image recognition,feature extraction,Gaussian mixture model,structural risk minimization
  • 相关文献

参考文献6

二级参考文献14

  • 1Fumiaki Takeda, Sigeru Ornatu. High speed paper currency recognition by neural networks. IEEE Trans on Neural Network,1995, 6(1): 73--77. 被引量:1
  • 2Nei Kato, Shin'chiro Omachi. A handwriting character recognition system using directional element feature. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258-- 262. 被引量:1
  • 3J Illing, J Kittler. A survey of the hough transform. Computer on Vision, Graphics, Image Processing, 1988, 44 ( 1 ) : 87-- 116. 被引量:1
  • 4V F Leavers. Which hough transform. Computer on Vision,Graphics, and Image Processing: Image Understanding, 1993, 58(2) : 250-264. 被引量:1
  • 5A Frosini, M Gori, P Priami. A neural network-based modal for paper currency recognition and verification. IEEE Trans on Neural Networks, 1996, 7(6): 1482--1490. 被引量:1
  • 6Rabiner L, Juang B H. Fundamentals of Speech Recognition. Prentice Hall, 1993. 被引量:1
  • 7Titterington D M, Smith F M, Makov U E. Statistical analysis of finite mixture distribution. John Wiley, 1985. 被引量:1
  • 8Roberts S, Husmeier D, Penny W. Bayesian approaches to gaussian mixture modeling. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998; 20(11): 1133-1142. 被引量:1
  • 9Richaxdson S, Green P J. On bayesian analysis of mixtures with an unknown number of components. J Royal Statistical Soc-Series B, 1997; 59(4): 731-758. 被引量:1
  • 10Roeder K, Wasserman L. Practical bayesian density estimation using mixtures of normals. J Am Statistical Assoc, 1997; 92(3): 895-901. 被引量:1

共引文献43

同被引文献66

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部