期刊文献+

Chebyshev-Legendre拟谱方法解非经典抛物型方程 被引量:2

Chebyshev-Legendre pseudo-spectral methods for solving nonclassical parabolic equations
下载PDF
导出
摘要 利用Chebyshev-Legendre拟谱方法数值求解了一类非经典抛物型方程,同时利用罚方法处理边界条件,得到了精度更高的数值结果. Chebyshev and Chebyshev-Legendre pseudo-spectral methods were presented for numerically solving a category of nonclassical parabolic equations. Meantime boundary conditions of the nonclassical parabolic equations were dealt with penalty method. So that more accurate numeric solution were obtained.
作者 赵廷刚
机构地区 上海大学理学院
出处 《兰州理工大学学报》 CAS 北大核心 2006年第2期147-149,共3页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(3ZS041-A25-006)
关键词 非经典抛物型方程 拟谱方法 Chebyshev-Legendre 罚方法 nonclassical parabolic equations pseudo-spectral methods Chebyshev-Legendre penalty method
  • 相关文献

参考文献1

二级参考文献2

共引文献9

同被引文献10

  • 1李功胜,谭永基.A CONDITIONAL STABILITY FOR AN INVERSE PROBLEM ARISING IN GROUNDWATER POLLUTION[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2005,14(3):217-225. 被引量:7
  • 2GOTTLIEB D,ORSZAG S A.Numerical analysis ofspectral methods:theory and applications[M].Phila-delphia,PA,USA:SIAM,1977. 被引量:1
  • 3HAIDVOGEL D B.Resolution of downstream bound-ary layers in the Chebyshev approximation to viscousflow problems[J].J Comput Phys,1979,33(3):313-324. 被引量:1
  • 4OLIVIER B.On the solution of the Navier-Stokesequations using Chebyshev projection schemes withthird-order accuracy[J].Computers&Fluids,1997,26(2):107-116. 被引量:1
  • 5ZHENG Zheming,PETZOLD L.Runge-Kutta-Che-byshev projection method[J].J Comput Phys,2006,219(2):976-991. 被引量:1
  • 6ZHANG Wei,ZHANG Chuhua,XI Guang.An ex-plicit Chebyshev pseudospectral multigrid method forincompressible Navier-Stokes equations[J].Comput-ers&Fluids,2010,39(1):178-188. 被引量:1
  • 7ZHANG Chuhua,ZHANG Wei,XI Guang.Apseudospectral multidomain method for conjugate con-duction-convection in enclosures[J].Numerical HeatTransfer:B,2010,57(4):260-282. 被引量:1
  • 8FUNARO D,GOTTLIEB D.A new method of im-posing boundary conditions in pseudospectral approxi-mations of hyperbolic equations[J].Mathematics ofComputation,1988,51(184):599-613. 被引量:1
  • 9HESTHAVEN J S.Spectral penalty methods[J].Applied Numerical Mathematics,2000,33(1/2/3/4):23-41. 被引量:1
  • 10ZHANG Wen,MA Heping.The Chebyshev-Legendrecollocation method for a class of optimal control prob-lems[J].International Journal of Computer Mathe-matics,2008,85(2):225-240. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部