摘要
针对高层次综合中时间约束下的调度问题,提出了对功能单元的2种下限估算算法:单位长度调度法和最大网络流法·其主要思想是将原调度问题的不同约束放松,得到多项式可解的新问题,并使得新问题的最优解是原调度问题的下限值·将2种算法与已有的最小重叠法和整数线性规划给出的最优解做了理论和实验上的比较·实验结果表明:2种估算算法运行时间合理,并且单位长度调度法比最小重叠法更准确·最后总结了各种约束对下限估算准确性的影响·
In this paper, the problem of lower-bound estimation on functional units for the time-constrained scheduling is studied. Two polynomial estimators, UnitLength and MaxFlow, are proposed. The main idea of the two algorithms is to transform the original scheduling problem into new problems by relaxing constraints, and guarantee that the optimal solutions of the new problems are lower-bounds of the original problem. The existing Minlnterval method and an integer linear programming formulation are implemented to evaluate the accuracy of the proposed algorithms. Experimental results indicate that the runtime of the two estimators is reasonable, and UnitLength is more accurate than Minlnterval. Finally, the effect of relaxation of different constraints on the estimation accuracy is concluded.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2006年第4期532-537,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家"八六三"高技术研究发展计划(2003AA1Z1010
2004AA1Z1010)
关键词
高层次综合
调度
时间约束
下限估算
high-level synthesis
scheduling
time-constrained scheduling
lower-bound estimation