期刊文献+

基于Multi-Agent的区域交通协调控制研究 被引量:9

Urban Traffic Coordination Control System Based on Multi-Agent
下载PDF
导出
摘要 提出了一种基于M u lti-A gen t的区域交通协调控制系统。系统针对路网中各交叉口交通流相互影响的特点,构造了一种基于分布权值函数的分布式Q学习算法,采用此算法实现了M u lti-A gen t的学习以及协调机制。通过各A gen t间的协调控制来协调相邻交叉口处的控制信号,从而消除路网中的交通拥塞。最后利用微观交通仿真软件Param ics对控制算法进行了仿真研究,仿真结果表明了控制算法的有效性。 In this paper an urban traffic coordination control system based on Multi-Agent is put forward. As for the interactive intersection, an algorithm of distributed Q-learnlng based on distributed weight function is brought forward. The learning and coordinating function of Multi- Agent is realized by the distributed Q-learning. The paper uses the coordination control of each Agent to coordinate the signal of adjacent intersections for eliminating the congestion of traffic network, Finally, the control algorithm is simulated by Paramics, which is a microscopic traffic simulation software. Experimental results indicate that the control algorithm is effective and reliable.
出处 《交通与计算机》 2006年第2期94-98,共5页 Computer and Communications
基金 北京市教委科技发展计划基金资助项目(批准号:KM200410005001) 北京市自然科学基金资助项目(批准号:4042006) 北京工业大学青年科研基金项目(批准号:97002011200501)
关键词 MULTI—AGENT 协调控制 分布式Q学习 Multi-Agent coordination control distributed Q-learning
  • 相关文献

参考文献7

二级参考文献28

  • 1杨璐,洪家荣,黄梯云.用加强学习方法解决基于神经网络的时序实时建模问题[J].哈尔滨工业大学学报,1996,28(4):136-139. 被引量:2
  • 2阎平凡.再励学习——原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34. 被引量:30
  • 3Caroline C, Craig B. The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems. In Proc. Workshop on Multi-agent Learning, 1997:602- 608 被引量:1
  • 4Sutton R S, Barto A G. Reinforcement Learning. MIT Press ,1997 被引量:1
  • 5Littman M L. Markov Games as a Framework for Multi-agent Reinforcement Learning. In Proc.of 7th International Conterence on Machine Learning, 1994:157- 163 被引量:1
  • 6Littman M L, Szepesvari C. A Generalized Reinforcement-learning Model: Convergence and Applications. In: Proc of the 13th Int'l Conf on Machine Learning. Bari, Italy: Morgan Kanfmann, 1996:310 被引量:1
  • 7Piao Songhao, Hong Bingrong. Fast Reinforcement Learning Approach to Cooperative Behavior Acquisition in Multi-agent System.Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Lausanne ,Switzerland. 2002-10: 871- 875 被引量:1
  • 8Mataric M J. Reinforcement Learning in the Multi-robot Domain.Autonomous Robots4,1997, ( 1 ):73- 83 被引量:1
  • 9Stone P, Veloso M. Using Machine Learning in the Soccer Server.Proc. of IROS Workshop on Robocup, 1996 被引量:1
  • 10Nobuo S, Akira H. A Multiagent Reinforcement Learning Algorithm Using Extended Optimal Response. Proc. of the First International Joint Conference on Autonomous Agents & Multiagent Systems,Bologna, Italy, 2002-07:370- 377 被引量:1

共引文献158

同被引文献87

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部