摘要
设R是具有局部单位元的G-分次环,对于任意群G及其子群H K.本文研究了H/K-分次R#G/H-模范畴(H/K,R#G/H)-gr与G/K-分次R-模范畴(G/K,R)-gr的同构.当取其特殊情形K={e}时,所得结果推广了刘绍学的相关结论.
Let R be a G -graded ring with local units, G be an arbitrary group, K and H are subgroups of G satisfying K belong to H belong to G, we study the isomorphism between the category (H/K, R # G/H)-gr of left R # G/H- modules graded by H/K and the category ( G/K, R)-gr of left R -modules graded by G/K. As a corollary, we extend the Theorem of Liu Shaoxue.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2006年第1期4-9,共6页
Journal of Huaiyin Teachers College;Natural Science Edition