摘要
证明了Banach空间X以它的任意闭子空间M为模的商空间X/M对X的Banach-Saks性质(BSP)、接近一致凸性(NUC)具有继承性.当M可逼近时,商空间X/M对X的弱局部一致凸性(WLUR)和局部k一致凸性(LKUR)具有继承性.
The paper presents that if X is a Banach space with Banach - Saks property or nearly uniformly convexity and M is a closed subpace ofX , then the quotient spaceX/M has also Banach - Saks property or nearly uniformly convexity. Moreove, weakly local uniformly convexity and local k - uniformly convexity of X may be lifted to the quotient space X/M if M is proximal inX .
出处
《通化师范学院学报》
2006年第2期4-6,共3页
Journal of Tonghua Normal University
关键词
商空间
BNP性质
接近一致凸性
弱局部一致凸性
局部女一致凸性
quotient space
Banach- Saks property
nearly unfirmly convexity
weakly local uniformly convexity
local k - uniformly convexity