期刊文献+

基于模糊遗传优化支持向量机的系统辨识研究 被引量:2

Research on System Identification Based on Fuzzy GAs Support Vector Machine
下载PDF
导出
摘要 在实际应用中支持向量机的参数选取问题一直没有得到很好地解决,限制了其应用。为了能够自动获取最优的支持向量机参数,提出了基于模糊遗传算法的SVM参数选择方法,用模糊逻辑在线调整遗传算法的交叉概率pc和变异概率pm,并采用基于模糊遗传优化的支持向量机回归和BP神经网络对非线性系统辨识问题进行了研究。仿真结果表明,在小样本情况下,支持向量机比神经网络具有更高的系统辨识精度和更好的泛化能力。 In practice, the problem on how to select parameters of SVM is not solved properly,so that its application is restricted. In order to get the optimal parameters of SVM automatically, a parameter selection approach based on fuzzy genetic algorithms (FGAs) is proposed in this paper. The nonlinear system identification is studied using the crossover probability Pc and mutation probability Pm of the on-line adjustment genetic algorithm based on fuzzy logic, the support vector regression based on FGAs and BP neural network. The simulation results show that SVM has higher system identification precision and better generalization performance than neural networks in the case of small samples.
出处 《西安理工大学学报》 CAS 2006年第1期49-53,共5页 Journal of Xi'an University of Technology
基金 陕西省自然科学基金资助项目(2003F33) 陕西省教育厅专项科研项目(04JK249)
关键词 支持向量机 模糊遗传算法 结构风险最小化 神经网络 系统辨识 support vector machine fuzzy genetic algorithms (FGAs) structural risk minimization neural network system identification
  • 相关文献

参考文献9

二级参考文献38

  • 1袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1999.. 被引量:47
  • 2Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans. on Neural Networks, 1990,1:4 -27. 被引量:1
  • 3Chart W C, Chart C W, Cheung, K C, et al. On the modelling of nonlinear dynamic systems using support vector neural networks[ J ]. Engineering Applications of Artificial Intelligence, 2001,14:105 -113. 被引量:1
  • 4Vapnik V N. The Nature of Statistical Learning Theory [ M ].NewYork: Springer-Verlag, 1995. 被引量:1
  • 5Smola A. Learning with kernels [ D ]. Bed!n, Germany: Technischen Universit"at Berlin, 1998. 被引量:1
  • 6Gao J B, Gunn S R, Harris C J. A probabilistle framework for SVM regression and error estimation [ J ]. Maehlne Learning,2002,46:71 -89. 被引量:1
  • 7Kwok J T-Y. The evidence framework applied to support vector machines [J]. IEEE Trans on Neural Networks, 2000,11:1162- 1173. 被引量:1
  • 8Vapnik V N. Statistical learning theory[M]. New York, 1998. 被引量:1
  • 9Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245. 被引量:1
  • 10Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105. 被引量:1

共引文献2494

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部