期刊文献+

均布载荷作用下正交各向异性固支梁的解析解 被引量:12

Analytical solution for fixed-end orthotropic beams subjected to uniform load
下载PDF
导出
摘要 针对均布载荷作用下正交各向异性梁在两端固支条件下的平面应力问题,求解了应力和位移的解析解.在求解过程中,构造了一个含待定系数的应力函数,通过Airy应力函数解法,给出了应力和位移的表达式.对固支端边界条件采用两种处理办法,利用应力和位移边界条件,确定应力函数中的待定系数,得到了应力和位移的解析解结果.结果表明,该解析与由Nastran程序计算的有限元数值结果相比,解析解落在有限元数值的附近,两者较为吻合.该解析解对于跨高比较大的梁有较高的精度,并可退化到各向同性梁的结果. For the plane stress problem of fixed end orthotropic beams subjected to uniform load, the analytical solutions of stress and displacement were resolved. A stress function involving several unknown coefficients was constructed in the solution process, and the stress and displacement expressions were obtained through traditional Airy stress function methodology. After the fixed end boundary condition was treated with two methods, the unknown coefficients in stress function were determined with stress and displacement boundary conditions, and the analytical solutions were achieved. The results show that compared with finite element method (FEM) numerical solutions by Nastran codes, the analytical solutions are close to and agree well with the FEM solutions. The analytical solutions can reach high precision for the beams with large span height ratio, and can be degenerated into isotropic results.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第3期511-514,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(10472102 10432030)
关键词 固支梁 正交各向异性 应力函数 解析解 fixed-end beam orthotropic stress function analytical solution
  • 相关文献

参考文献6

  • 1TIMOSHENKO S P,GOODIER J N.Theory of Elasticity (3rd ED)[M].New York,McGraw Hill,1970. 被引量:1
  • 2LEKHNITSKII S G.Anisotropic Plate [M].New York,Gordon and Breach,1968. 被引量:1
  • 3JIANG A M,DING H J.The analytical solutions for orthotropic cantilever beams (Ⅰ):Subjected to surface forces [J].Journal of Zhejiang University:SCIENCE,2005,6A(2) :126 - 131. 被引量:1
  • 4GERE J M,TIMOSHENKO S P.Mechanics of materials (2nd ED) [M].Boston,PWS-KENT Publishing Company,1984. 被引量:1
  • 5AHMED S R,IDROS B M,UDDIN M W.Numerical solution of both ends fixed deep beams [J].Computer & Structures,1996,61(1):21-29. 被引量:1
  • 6DING H J,HUANG D J,WANG H M.Analytical solution for fixed-end beam subjected to uniform load [J].Journal of Zhejiang University:SCIENCE,2005,6A(8):779 - 783. 被引量:1

同被引文献70

引证文献12

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部