期刊文献+

均匀设计法优化芥菜多糖的提取工艺及其神经网络模型的研究 被引量:7

Optimization of Extraction Process of the Polysaccharides from Brassica juncea and the Neural Network Model for Extracting Polysaccharide
下载PDF
导出
摘要 通过均匀设计实验和二次多项式逐步回归分析得出从芥菜中提取多糖的优化工艺,即提取时间130 min、酶浓度1%、pH4.0、提取温度60℃。在此基础上运用基于均匀设计的人工神经网络构建了工艺参数与芥菜多糖提取率之间的数学模型。在优化的工艺参数下对多糖的提取率进行预测,二次多项式逐步回归的预测值与实测值的相对误差为23.02%,而人工神经网络的预测值与实测值的相对误差仅为4.37%。结果表明,人工神经网络比二次多项式逐步回归分析的预测结果更准确。 In this paper, the optimal parameters were obtained by the uniform design and regression techniques as follows: extracting time 130 min, enzyme concentration 1%, pH 4.0 and extracting temperature 60℃. Based on uniform design method, a prediction model for the experimental parameters and the extraction yield of polysaccharide from Brassica juncea was established by artificial neural networks. Prediction of the extraction yield of polysaccharide from Brassica juncea using methods of regressive analysis and the artificial neural networks was studied, the relative error by regressive analysis method is 23.02 96 while the relative error by artificial neural networks method is 4. 371%. The results showed that the artificial neural networks methods is more reliable than regressive analysis method in predicting polysaccharide extraction yield.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2006年第2期53-56,共4页 Food and Fermentation Industries
基金 国务院侨办基金(05Q0016)资助项目
关键词 芥菜 多糖 均匀设计 回归分析 BP神经网络 Brassica juncea, polysaccharide, uniform design, regressive analysis, BP neural networks
  • 相关文献

参考文献9

二级参考文献27

  • 1[1]Narendra K.S. and Parthasarathy k.. Gradient Methods for the Optimization of Dynamical systems Containing Neural Network. IEEE Transaction on neural networks. 1991, 2:252~262. 被引量:1
  • 2[2]Karnin, E.D.. A simple procedure for pruning back\|propagation trained neural networks. IEEE Transaction on neural networks. 1991, 2:239~242. 被引量:1
  • 3[3]Stevenson, M.. Winter, R.. Widrow, B.. Sensitivity of feedforward neural networks to weight errors. IEEE Transaction on neural networks. 1991, 4:71~80. 被引量:1
  • 4[5]Chandrasekharan K. and Calderbank P. H.. Neural Model Predictive Control for Nonline Chemical Processes. Chemica Engineering Science. 1981,36:819~823. 被引量:1
  • 5Heijden R,Carbohydr Eur,1998年,23卷,48页 被引量:1
  • 6Guo Z W,Chin J Chem,1996年,14卷,3期,279页 被引量:1
  • 7Liu F,Life Sci,1996年,58卷,21期,1795页 被引量:1
  • 8Wong C K,J Int Med Res,1994年,22卷,6期,299页 被引量:1
  • 9Sun X B,Planta Med,1992年,58卷,5期,445页 被引量:1
  • 10张新,项树林,崔晓燕,钱玉昆.枸杞多糖对小鼠淋巴细胞信号系统的效应[J].中国免疫学杂志,1997,13(5):289-292. 被引量:41

共引文献198

同被引文献86

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部