期刊文献+

无穷维线性反应扩散过程的极限状态

Limit for Infinite dimensional linear reaction and diffusion processes
下载PDF
导出
摘要 揭示了无穷维线性反应扩散过程和偏微分方程这两种描述反应扩散现象的基本工具的关系,证明了无穷维线性反应扩散过程的大数定理,给出了无穷维线性反应扩散过程的极限状态.讨论了当无穷维线性反应扩散过程的无穷小算子中的参数随指标n变化时,反应扩散过程依概率收敛于一偏微分方程的解的条件,揭示了此偏微分方程的系数与过程的无穷小算子中的参数之间的关系. The relation between infinite dimensional linear reaction and diffusion processes and partial differential equations as two basic tools for studying reaction and diffusion phenomenon is reuealed. A law of large number for infinite dimensional linear reaction and diffusion processes is proved, the limit of processes is obtained. We have proved that a series of infinite dimensional linear reaction and diffusion processes converges to a solution of a partial differential equation under some conditions, and reveals the relation between the coefficients of the partial differential equation and the parameters of infinitesimal operator of the processes.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第3期432-435,463,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10271034)
关键词 无穷维线性反应扩散过程 马氏半群 无穷小算子 无穷质点马氏过程 反应扩散方程 dimensional linear reaction and diffusion processes Markov semigroups infinitesimal operator infinite particle Markov process reaction and diffusion equation
  • 相关文献

参考文献7

  • 1严士健著..无穷粒子马尔可夫过程引论[M].北京:北京师范大学出版社,1989:305.
  • 2陈木法..跳过程与粒子系统[M].北京:北京师范大学出版社,1986:524.
  • 3韩东.多物种无穷维反应扩散过程的存在性[J].数学年刊(A辑),1994,1(4):420-425. 被引量:1
  • 4PAZY A.Semigroups of linear operators and applications to partical differetial equations[M].New York:Springer-verlag Inc.,1983. 被引量:1
  • 5王梓坤.随机过程论[M].北京:科学出版社,1978.. 被引量:11
  • 6MICHALIK A C.Stochastic differential equations in Hilbert spaces[A].Probability Theory Banach Center Pubilications Vol5[C].Warsaw:Pwn-polish Scientific Publishers,1979.53-71. 被引量:1
  • 7KOTELENEZ P.Law of large numbers and central limit theoren for linear chemical reactions with diffusion[J].Ann Prob,1986,14(1):173-193. 被引量:1

二级参考文献5

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部