期刊文献+

基于工业CT的工件缺陷识别方法 被引量:3

Workpiece defect recognition methods based on industrial CT
下载PDF
导出
摘要 工业CT是一种有效的工件缺陷识别的方法,代表着无损检测技术的发展方向。首先概述工业CT技术在工件缺陷识别中的应用,并把其他和其他常用方法进行了简单比较;接着从工件缺陷识别的流程人手,对每个步骤都从处理思路和处理方法方面作了阐述;然后对一些在工件缺陷识别方面很有潜力的算法(Level set和Gabor小波)进行了介绍和分析;最后对工业CT在工件缺陷识别方面的应用前景进行了展望。 Industrial CT is an effective method of workpieee defect recognition, which represents the development orientation of nondestructive test. This paper first summarizes the application of Industrial CT to workpiece defect recognition, and makes a brief comparison with other common ways. Then, each step of recognition process is explained form the aspects of the idea and the methods. In the following part, some methods which have potentials in workpiece defect recognition (Level Set method and Gabor analysis) were introduced and analyzed. Finally, the prospect of industrial CT application to workpiece defect recognition is discussed.
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2006年第2期180-183,共4页 Nuclear Electronics & Detection Technology
关键词 工业CT 缺陷识别 LEVEL SET方法 Gabor小波分析 industrial CT defect recognition level set method Gabor analysis
  • 相关文献

参考文献8

  • 1赵秋艳.国外先进无损检测技术的发展及应用[J].宇航材料工艺,1998,28(4):48-52. 被引量:9
  • 2Zhu Dongping,et al.A Prototype Vision System for Analyzing CT Imagery of Hardwood Logs[A].Twenty-third south-eastearn symposium on system theory.1991.75. 被引量:1
  • 3冷帅,张丽,陈志强,孙少华.CT图像中缺陷的快速定位方法[J].中国体视学与图像分析,2003,8(2):105-107. 被引量:9
  • 4Mir AH,et al.Texture Analysis of CT Images[J].IEEE engineering in medicine and biology,1995,14[6],781. 被引量:1
  • 5Osher S,et al.Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics,1988,79:12. 被引量:1
  • 6Caselles V,et al.Geodesic Active Contours[A].5th International Conference of Computer Vision.1995. 被引量:1
  • 7Moshe Porat,et al.The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision[J].IEEETrans on Pattern Analysis and Machine Intelligence,1988,10(4):452. 被引量:1
  • 8Jenssen R,et al.Independent component analysis for texture segmentation[J].Pattern Recognition,2003,36(10):2301. 被引量:1

二级参考文献5

  • 1Benoit B. Mandelbrot, "The Fractal Geometry of Nature",W.H.FREEMAN AND COMPANY New York, 1983 被引量:1
  • 2J.Keller, R.Crownover, and S.Chen, "Texture Description and Segmentation through Fractal Geometry", Computer Vision Graphics and Image Processing, Vol. 45, 1989 被引量:1
  • 3B.B. Chaudhuri and N. Sarkar "An Efficient Approach to Compute Fractal Dimension in Texture Image", IEEE Pattern Recognition, 1992 被引量:1
  • 4Yu Tao, Ernest C M. Lam and Yuan Y. Tang "Extraction of Fractal Feature for Pattern Recognition", IEEE Pattern Recognition, 2000 被引量:1
  • 5Sonny Novianto, Yukinori Suzuki, Junji Maeda "Near Optimum estimation of local fractal dimension for image segmentation", Pattern Recognition Letters, 2002 被引量:1

共引文献16

同被引文献18

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部