摘要
研究了一种利用有限正弦和有限余弦变换解变密度声波方程的方法,它的基本思想有下列4点:(1)对声波方程两端进行关于一个或多个变量的有限正弦或有限余弦变换;(2)将待求波场的Fourier正弦或余弦级数表达式代入到经过变换后的波动方程之中,进而得到级数表达系数所满足的微分方程式;(3)分别对时间和未作变换的空间导数进行有限差分或其它形式的近似,得到变换系数所满足的离散(矩阵)方程;(4)将通过解离散(矩阵)方程而得到的变换系数代入到相应的反演公式中去,用求和的方式得到待求波场的数值解。与其它方法相比,利用有限正弦和有限余弦的优点在于可以无限制地扩展变换方向的计算区间和可以处理任意变化的速度和密度结构而不明显地增加计算量。
The authors present a method for solving the acoustic wave equation with variable density by using finite sine and cosine transforms. The method consists of four steps: (1) applying the finite sine or the finite cosine transform to the wave equation; (2) inserting the unknown acoustic field given by the sine or the cosine series into the transformed wave equation; (3) applying the finite difference or other approximations to the time and spatial derivatives that are not transformed; (4) computing the wavefield by using the inverse transforms and the coefficients obtained by solving the discrete equation. In comparison with other methods, the method presented here is suitable for computing synthetic seismograms in the models with strong lateral velocity and density variations.
出处
《吉林大学学报(地球科学版)》
EI
CAS
CSCD
北大核心
2006年第1期108-112,共5页
Journal of Jilin University:Earth Science Edition
基金
国家自然科学基金项目(49874029)
高等学校博士学科点专项科研基金资助项目(97018705)