期刊文献+

基于模糊建模的球团密度在线测量 被引量:2

Pellet Density On-Line Measurement Based on Fuzzy Modeling
下载PDF
导出
摘要 提出了一种在线测量球团密度的新方法.该方法以模糊技术为基础,综合考虑制团过程各因素对球团密度的影响,建立起球团密度的软测量模型.在软测量模型中,采用T-S模糊模型描述球团密度变化的非线性过程,并提出了一种改进的模型辨识算法,利用减法聚类法确定合适的聚类组数目,并用实数编码的遗传算法优化全局参数,从而获得了结构简单、具有较高精度的模糊软测量模型.根据此方法,设计了测量装置,并进行了现场试验,试验结果表明软测量模型输出与实验室测量值基本一致,平均误差较低.该方法较大地提高了制团的生产效率,为球团密度的最优控制奠定了基础. A new on-line measurement approach for pellet density is presented which adopted fuzzy modeling to construct a simple accurate soft measuring fuzzy model for pellet density. During the modeling, T-S fuzzy model is employed to approximate the non-linearity of pellet density, an improved model identifying method is put forward, subtractive-clustering algorithm is used to determine the optimum number of clusters, and a real coded genetic algorithm is adopted to optimize model parameters. A measuring device is designed and the actual experimental results showed that the proposed approach provided a result similar to that of the laboratory measurement and had low average error. It greatly improved the productive efficiency of pelletizing and laid a foundation for the optimal control of pellet density.
出处 《测试技术学报》 2006年第1期27-31,共5页 Journal of Test and Measurement Technology
关键词 球团密度 软测量 模糊建模 遗传算法 误差分析 pellet density soft sensing system fuzzy modeling genetic algorithm error analysis
  • 相关文献

参考文献6

二级参考文献24

  • 1GOLUB G H VAN C F.Matrix Computation [ M ].Baltimore,MD:Johns Hopkins Univerity Press,1989.. 被引量:1
  • 2王立新.自适应模糊逻辑系统与控制[M].北京:国防工业出版社,1996.. 被引量:1
  • 3[4]RYZKO P,HABERSTROH E.Modeling of the mixing process and on-line-prediction of rubber compound and molded part properties with intelligent process analyses technologies.Proceedings of the meeting of rubber division,American Chemical Society,Dallas,Illinois,2004,4:4-6. 被引量:1
  • 4[5]TAN K K,SEET H L.Geometrical error compensation of precision motion systems using Radial basis function IEEE Trans on Instrument and Measurement,2000,49(5):984-991. 被引量:1
  • 5[6]TMS320F/C240 DSP controller reference guide.Texas Instrument,1998. 被引量:1
  • 6WANG Lixin, MENDEL J M. Fuzzy basis function, universal approximation and orthogonal least squares learning [ J ]. IEEE Trans on Neural Networks, 1992,3(5) :807 - 814. 被引量:1
  • 7YEN J, WANG Dang. Applying statistical information criteria for optimal fuzzy model construction [ J ] . IEEE Trans on Fuzzy System,1998,6(6) :362 - 372. 被引量:1
  • 8MENDEL J M. Uncertain Rule-Based Fuzzy Logic Systems [ M ].Engell-Wood, NJ: Pnmtice Hall,2001. 被引量:1
  • 9YAGER R R, FILEV D P. Approximate clustering via the mountain method[J]. IEEE Trans on Systems, Man, and Cybernetics, 1994,24(8) : 1274 - 1284. 被引量:1
  • 10Layer E,Gawedzki W.Theoretical principles for dynamic errors measurement[J].Measurement,1990,8(1):178-182. 被引量:1

共引文献42

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部