期刊文献+

Gauss Sum of Index 4:(1)Cyclic Case 被引量:2

Gauss Sum of Index 4:(1)Cyclic Case
原文传递
导出
摘要 Let p be a prime, m ≥ 2, and (m,p(p - 1)) = 1. In this paper, we will calculate explicitly the Gauss sum G(X) = ∑x∈F*qX(x)ζ^Tp^(x) in the case of [(Z/mZ)* : (p)] = 4, and -1 (不属于) (p), where q P^f, f =φ(m)/4, X is a multiplicative character of Fq with order m, and T is the trace map for Fq/Fp. Under the assumptions [(Z/mZ)* : (p)] = 4 and 1(不属于) (p), the decomposition field of p in the cyclotomic field Q(ζm) is an imaginary quartic (abelian) field. And G(X) is an integer in K. We deal with the case where K is cyclic in this oaDer and leave the non-cvclic case to the next paper. Let p be a prime, m ≥ 2, and (m,p(p - 1)) = 1. In this paper, we will calculate explicitly the Gauss sum G(X) = ∑x∈F*qX(x)ζ^Tp^(x) in the case of [(Z/mZ)* : (p)] = 4, and -1 (不属于) (p), where q P^f, f =φ(m)/4, X is a multiplicative character of Fq with order m, and T is the trace map for Fq/Fp. Under the assumptions [(Z/mZ)* : (p)] = 4 and 1(不属于) (p), the decomposition field of p in the cyclotomic field Q(ζm) is an imaginary quartic (abelian) field. And G(X) is an integer in K. We deal with the case where K is cyclic in this oaDer and leave the non-cvclic case to the next paper.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1425-1434,共10页 数学学报(英文版)
基金 the National Fundamental Research (973) Project of China (G1999175101) the Grant of National Education Department of China (20010003001)
关键词 Gauss sum Stickelberger theorem Davenport-Hasse formula cyclic quartic number field Gauss sum, Stickelberger theorem, Davenport-Hasse formula, cyclic quartic number field
  • 相关文献

参考文献8

  • 1Ireland, K, Rosen, M.: A Classical Introduction to Modern Number Theory, GTM84, Springer-Verlag, New York, 1982. 被引量:1
  • 2Lang, S.: Cyclotomic Fields Ⅰ and Ⅱ, GTM121, Springer-Verlag, New York, 1990. 被引量:1
  • 3Lidl, R, Niederreiter, H.: Finite Fields, Addison-Wesley, New York, 1983. 被引量:1
  • 4Berndt,B. C, Evans, R. J, Williams, K. S.: Gauss and Jacobi Sums, J. Wiley and Sons Company, New York, 1997. 被引量:1
  • 5Langevin, P.: Calculs de certaines sommes de Gauss. J. of Number Theory, 32, 59-64 (1997). 被引量:1
  • 6Mbodj, O. D.: Quadratic Gauss Sums. Finire Fields and their Appl, 4, 347-361 (1998). 被引量:1
  • 7Van der Vlugt, M.: Hasse-Davenport curves, Gauss sums and weight distributions of irreducible cyclic codes. J. of Number Theory, 55, 145-159 (1995). 被引量:1
  • 8Feng, K. Q.: Explicit description of cyclic quartic number fields. Acta Mathematica Sinica, Chinese Series,27, 410-424 (1984). 被引量:1

同被引文献20

  • 1YANG Jing1,2 & XIA LingLi3,1Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China,2Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,637371,Singapore,3Basic Courses Department,Beijing Union University,Beijing 100101,China.Complete solving of explicit evaluation of Gauss sums in the index 2 case[J].Science China Mathematics,2010,53(9):2525-2542. 被引量:5
  • 2Jing YANG,Shi Xin LUO,Ke Qin FENG.Gauss Sum of Index 4:(2)Non-cyclic Case[J].Acta Mathematica Sinica,English Series,2006,22(3):833-844. 被引量:1
  • 3L. Stickelberger.Ueber eine Verallgemeinerung der Kreistheilung[J]. Mathematische Annalen . 1890 (3) 被引量:1
  • 4Baumert L D,McEliece R J.Weights of irreducible cyclic codes. Information and Control . 1972 被引量:1
  • 5Feng K Q,Yang J.The evaluation of Gauss sums for characters of 2-power order in the index 4 case. Algebra Colloquium . 2009 被引量:1
  • 6McEliece R J.Irreducible cyclic codes and Gauss sums. Math Centre Tracts . 1974 被引量:1
  • 7Moisio M.Exponential sums,Gauss sums and cyclic codes. . 1998 被引量:1
  • 8Yang J,Xia L L.A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases. http://arxiv.org/pdf/0912.1414v1 . 2009 被引量:1
  • 9Lidl R,Niederreiter H.Finite Fields. Encyclopedia of Mathematics and its Applications . 1983 被引量:1
  • 10Baumert, L. D,Mykkelveit, J.Weights distribution of some irreducible cyclic codes. D. S. N. Report 16 . 1973 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部