期刊文献+

Complete solving of explicit evaluation of Gauss sums in the index 2 case 被引量:5

Complete solving of explicit evaluation of Gauss sums in the index 2 case
原文传递
导出
摘要 Let p be a prime number,N be a positive integer such that gcd(N,p) = 1,q = pf where f is the multiplicative order of p modulo N.Let χ be a primitive multiplicative character of order N over finite field Fq.This paper studies the problem of explicit evaluation of Gauss sums G(χ) in the "index 2 case"(i.e.[(Z/NZ):【p】] = 2).Firstly,the classification of the Gauss sums in the index 2 case is presented.Then,the explicit evaluation of Gauss sums G(χλ)(1 λ N-1) in the index 2 case with order N being general even integer(i.e.N = 2r·N0,where r,N0 are positive integers and N0 3 is odd) is obtained.Thus,combining with the researches before,the problem of explicit evaluation of Gauss sums in the index 2 case is completely solved. Let p be a prime number,N be a positive integer such that gcd(N,p) = 1,q = pf where f is the multiplicative order of p modulo N.Let χ be a primitive multiplicative character of order N over finite field Fq.This paper studies the problem of explicit evaluation of Gauss sums G(χ) in the "index 2 case"(i.e.[(Z/NZ):] = 2).Firstly,the classification of the Gauss sums in the index 2 case is presented.Then,the explicit evaluation of Gauss sums G(χλ)(1 λ N-1) in the index 2 case with order N being general even integer(i.e.N = 2r·N0,where r,N0 are positive integers and N0 3 is odd) is obtained.Thus,combining with the researches before,the problem of explicit evaluation of Gauss sums in the index 2 case is completely solved.
出处 《Science China Mathematics》 SCIE 2010年第9期2525-2542,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10990011) the PhD Programs Foundation of Ministry of Education of China (Grant No. 20090002120013)
关键词 GAUSS SUM Stickelberger’s THEOREM Stickelberger CONGRUENCE Davenport-Hasse LIFTING FORMULA Davenport-Hasse product FORMULA Gauss sum Stickelberger’s theorem Stickelberger congruence Davenport-Hasse lifting formula Davenport-Hasse product formula
  • 相关文献

参考文献20

  • 1Jing YANG,Shi Xin LUO,Ke Qin FENG.Gauss Sum of Index 4:(2)Non-cyclic Case[J].Acta Mathematica Sinica,English Series,2006,22(3):833-844. 被引量:1
  • 2Ke Qin FENG Jing YANG Shi Xin LUO.Gauss Sum of Index 4:(1)Cyclic Case[J].Acta Mathematica Sinica,English Series,2005,21(6):1425-1434. 被引量:2
  • 3L. Stickelberger.Ueber eine Verallgemeinerung der Kreistheilung[J]. Mathematische Annalen . 1890 (3) 被引量:1
  • 4Baumert L D,McEliece R J.Weights of irreducible cyclic codes. Information and Control . 1972 被引量:1
  • 5Feng K Q,Yang J.The evaluation of Gauss sums for characters of 2-power order in the index 4 case. Algebra Colloquium . 2009 被引量:1
  • 6McEliece R J.Irreducible cyclic codes and Gauss sums. Math Centre Tracts . 1974 被引量:1
  • 7Moisio M.Exponential sums,Gauss sums and cyclic codes. . 1998 被引量:1
  • 8Yang J,Xia L L.A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases. http://arxiv.org/pdf/0912.1414v1 . 2009 被引量:1
  • 9Lidl R,Niederreiter H.Finite Fields. Encyclopedia of Mathematics and its Applications . 1983 被引量:1
  • 10Baumert, L. D,Mykkelveit, J.Weights distribution of some irreducible cyclic codes. D. S. N. Report 16 . 1973 被引量:1

二级参考文献16

  • 1Ireland, K, Rosen, M.: A Classical Introduction to Modern Number Theory, GTM84, Springer-Verlag, New York, 1982. 被引量:1
  • 2Lang, S.: Cyclotomic Fields Ⅰ and Ⅱ, GTM121, Springer-Verlag, New York, 1990. 被引量:1
  • 3Lidl, R, Niederreiter, H.: Finite Fields, Addison-Wesley, New York, 1983. 被引量:1
  • 4Berndt,B. C, Evans, R. J, Williams, K. S.: Gauss and Jacobi Sums, J. Wiley and Sons Company, New York, 1997. 被引量:1
  • 5Langevin, P.: Calculs de certaines sommes de Gauss. J. of Number Theory, 32, 59-64 (1997). 被引量:1
  • 6Mbodj, O. D.: Quadratic Gauss Sums. Finire Fields and their Appl, 4, 347-361 (1998). 被引量:1
  • 7Van der Vlugt, M.: Hasse-Davenport curves, Gauss sums and weight distributions of irreducible cyclic codes. J. of Number Theory, 55, 145-159 (1995). 被引量:1
  • 8Feng, K. Q.: Explicit description of cyclic quartic number fields. Acta Mathematica Sinica, Chinese Series,27, 410-424 (1984). 被引量:1
  • 9Lidl, R., Niederreiter, H,: Finite Fields, Addision-Wesley, New York, 1983 被引量:1
  • 10Van der Vlugt, M.: Hasse-Davenport curves, Gauss sums and weight distributions of irreducible cyclic codes. J. of Number Theory, 55, 145-159 (1995) 被引量:1

共引文献1

同被引文献1

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部