期刊文献+

Nagumo条件下p-Laplace微分方程周期解的存在性

Existence of periodic solutions for p-Laplacian differential equation with Nagumo condition
下载PDF
导出
摘要 对于一类在非牛顿流体力学和多孔介质中的气体湍流等方面有广泛应用的非线性p-La-place微分方程在符号条件和Nagumo条件下周期边值问题解的存在性进行了详细的讨论.在证明过程中利用了迭合度理论及p-Laplace下的“连续性定理”,所得结果推广了Granas和Lee等人已有的结论. With signal condition and Nagumo condition, the existence of periodic solutions for nonlinear p-Laplaeian differential equation, which is applied extensively in non-Newton fluid and turbulent flow of gas in porous medium, was discussed in detail. In the proof, coincidence degree theory and so called “continuous theorem” under p-Laplacian equation were used and the known results of Granas and Lee's were generalized.
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第B12期20-22,共3页 Journal of Jiangsu University:Natural Science Edition
关键词 p-Laplace微分方程 NAGUMO条件 周期解 连续性定理 p-Laplaeian differential equation Nagumo condition periodic solutions countinuous theorem
  • 相关文献

参考文献9

  • 1Herrero M A, Vazquz J L. On the propagation properties of a nonlinear degenerate parabolic equation [ J ]. Comm Partial Differential Equations, 1982 (7) : 1381 - 1402. 被引量:1
  • 2Esteban J R,Vazguez J L. On the equation of turbulent filtration in one-dimensinal porous media [J]. Nonlinear Analysis TMA, 1984, 12 (10):1303-1325. 被引量:1
  • 3Cabada A, Pouso R L. Existence result for the problem (φ(u'))' =f(t, u, u') with periodic and Neumann boundary conditions[J]. Nordinear Analysis TMA, 1997,30(3) :1733- 1742. 被引量:1
  • 4Fabry C, Fayyad D. Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities[J]. Rend Isit Mat Univ Trieste, 1992,24:207 -227. 被引量:1
  • 5王在洪.时间映射与二阶拟线性微分方程周期解的存在性[J].数学年刊(A辑),2001,22(4):427-428. 被引量:3
  • 6蒋达清.奇异半线性及超线性一维p-Laplacian方程边值问题的正解[J].数学学报(中文版),2002,45(4):731-736. 被引量:7
  • 7ZHANG Mei-rong, Nonuniform nonresonance at the first eigenvalue of the p - laplacian, [ J]. Nonlinear Analysis TMA ,1997,29:41 -51. 被引量:1
  • 8Manasevich R, Mawhin J. Periodic solutions for nonlinear systems with p-Lplacian-like operators [ J ]. J Differential Equations, 1998,145:367 - 393. 被引量:1
  • 9Granas A, Guenther R B, Lee J W. Some general existence priciple in the Caratheodory theory of nonlinear differential systems[J]. J Math Pures Appl,1991,70:153-196. 被引量:1

二级参考文献17

  • 1Agarwal R. P., O'Regan D., Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Equations, 1998, 143: 60-95. 被引量:1
  • 2Sun Y. J., Wu Y. P., On a singular nonlinear elliptic boundary value problem, Chinese Ann. of Math., Ser.A, 2000, 21(4): 437-448. 被引量:1
  • 3Habets P., Zanolin F., Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal.Appl., 1994, 181: 684-700. 被引量:1
  • 4Coster C. D., Pairs of positove solutions for the one-dimensional p-Laplacian, Nonlinear Analysis, 1994, 23:669-681. 被引量:1
  • 5Manasevich R., Zanolin F., Time mappings and multiplicity of solutions for the one-dimensional p-Laplacian,Nonlinear Analysis, 1993, 21: 269-291. 被引量:1
  • 6Wang J. Y., Jiang D. Q., A unified approach to some two-point, three-point and four-point boundary value problems with Caratheodory functions, J. Math. Anal. Appl., 1997, 211: 223-232. 被引量:1
  • 7O'Regan D., Some general existence principles and results for [φ(y')]' = q(t)f(t, y, y') (0<t<1), SIAM J.Math. Anal., 1993, 24(3): 648-668. 被引量:1
  • 8Wang J. Y., Gao W. J., Lin Z. H., Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., 1995, 47: 327-344. 被引量:1
  • 9Wang J. Y. Gao W. J., A singular boundary value problem for the one-dimensional p-Laplacian, J. Math.Anal. Appl., 1996, 201: 851-866. 被引量:1
  • 10Jiang D. Q., Liu H. Z., On the existence of nonnegative radial solutions for p-Laplacian elliptic systems, Ann.Polon. Math., 1999, 71(1): 19-29. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部