期刊文献+

关于生物免疫遗传算法收敛性的一般讨论研究 被引量:4

General discussion on convergence of immune genetic algorithm
下载PDF
导出
摘要 针对免疫遗传算法收敛性质的研究非常缺乏,提出了利用随机过程理论和引入遗传吸收率、散射率参数进行分析的方法.通过数学建模证明了免疫遗传算法所形成的种群序列的强马尔可夫性,利用遗传吸收率和散射率的计算,证明了在时间趋于无穷的情况下,该免疫遗传算法的概率弱收敛性.采用遗传吸收率、散射率和小生境技术对于防治早熟概率的详细计算和对混沌算子的分析,得到了该免疫遗传算法实际收敛效果的量化表示.研究结果表明,该方法能简化分析计算过程,对于算法效果的改善、算法运行时的参数选择具有较好的指向作用. Aimed at the lack of research on the convergence of immune genetic algorithm (IGA), two methods using the stochastic process theory and introducing the genetic absorptivity and genetic scattering rate were proposed. The strong Markovian property attributed to the population sequence was deduced by mathematical modelling. By calculating the genetic absorptivity and the genetic scattering rate, the weak convergence in probability of the immune genetic algorithm was proved on the condition that the time tended to infinity. By analyzing the chaos operator and deducing genetic absorptivity, genetic scattering rate and the probability on the prevention to premature by niche the quantitative convergence effect of the immune genetic algorithm was obtained. The results show that the methods can simplify the analysis computation process and are helpful for directing choice of better IGA parameters and improving the performance of the algorithm.
作者 罗小平 韦巍
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第12期2006-2011,共6页 Journal of Zhejiang University:Engineering Science
基金 浙江省重大自然科学基金资助项目(ZD0107) 国家自然科学基金资助项目(60405012)
关键词 免疫遗传算法 强马尔可夫性 概率弱收敛 参数分析 immune genetic algorithm strong Markovian property weak convergence in probability Convergence parameter analysis
  • 相关文献

参考文献15

  • 1周双喜,杨彬.影响遗传算法性能的因素及改进措施[J].电力系统自动化,1996,20(7):24-26. 被引量:26
  • 2HUNT J E, COOKED E. Learning using an artificial immune system[J]. Journal of Network and Computer Application, 1996,19 : 189 - 212. 被引量:1
  • 3KRISHNAKUMAR K, NEIDHOEFER J. Immunised neurocontrol [J]. Expert Systems With Application,1997, 13(3):201-214. 被引量:1
  • 4TAZAWA I,KOAKUTSU S, HIRATA H. An evolutionary optimization based on the immune system and its application to the VLSL floor-plan design problem[J].Electrical Engineering in Japan, 1998 124(4):27 - 36. 被引量:1
  • 5CHUN J S, JUNG H K, HAHN S Y. A study on comparison of optimization performance between immune algorithm and other heuristic algorithms[J]. IEEE Transactions on Magnetics, 1998 34(5) ..2972 - 2975. 被引量:1
  • 6MORI K, TSUKIYAMA M, FUKUDA T. Adaptive scheduling system inspired by immune system[A]. International Conference on Systems, Man, and Cybernetics[C]. San Diego: IEEE ,1998(4):3833-3837. 被引量:1
  • 7HUANG Shyh-Jier. An immune-based optimization method to capacitor placement in a radial distribution system [J].IEEE Transaction on Power Delivery,2000, 15(2) :744 - 749. 被引量:1
  • 8WANG Lei, JIAO Li-cheng. The immune genetic algorithm and its converge[A]. Fourth International Conference on Signal Processing [C]. Beijing, China: IEEE,1998(2):1347 - 1350. 被引量:1
  • 9罗小平,韦巍.一种基于生物免疫遗传学的新优化方法[J].电子学报,2003,31(1):59-62. 被引量:19
  • 10孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算[J].电力系统自动化,2002,26(12):30-34. 被引量:39

二级参考文献10

共引文献81

同被引文献35

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部