期刊文献+

基于自适应搜索的人工蜂群算法 被引量:3

An Artificial Bee Colony Algorithm Based on Adaptive Search
下载PDF
导出
摘要 针对基本的人工蜂群算法(basic Artificial Bee Colony algorithm,ABC)收敛速度慢和容易陷于局部最优等不足,采用混沌算子和逆向学习算子相混合的初始化种群的方法,有效地改进了初始种群的多样性;在雇佣蜂和观察峰的位置更新上,提出了自适应搜索算子.改进后的算法(Improved ABC,IABC)测试了5个标准单峰或多峰函数,结果表明,IABC算法在搜索效率、最优解质量、稳定性均优于ABC算法. The basic artificial bee colony algorithm has a slow convergence speed,and easily gets trapped in local optimum.An improved algorithm given in this paper combined chaotic operator and inverse operator and then produced initialization population to improve the diversity of initial population.The parameter adaptive search operator was put forward and applied to the position updating of employed bees and onlookers bees.The improved algorithm(Improved ABC,IABC) had been experimented by five standard unimodal or multi-peak functions.The experimental results showed that the IABC algorithm is superior to the ABC algorithm in the search efficiency,the quality of the optimal solution and the stability.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2013年第3期446-449,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省重点科技攻关项目(122102210488 132102210095) 河南省教育厅科学技术研究重点项目(13A520748)
关键词 人工蜂群算法 混沌算子 逆向算子 自适应搜索 artificial bee colony algorithm chaotic operator inverse operator adaptive search
  • 相关文献

参考文献9

  • 1Karaboga D. An idea bused on honey bee swarm for numerical optimization [ M ]. Kayseri: Ericiyes University, 2005:70-71. 被引量:1
  • 2Rao R, Narasiham S, Ramalingaraju M. Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm [J]. International Journal of Electrical Pawer and Energy Systems Engineering, 2008,1 (2) :37-41. 被引量:1
  • 3Singh A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [ J ]. Apllied Soft Computing, 2009,9 (2) : 625 -631. 被引量:1
  • 4Stom R, Price K. Differential evlution : A simple and effient heuristic for global optimization over continous spaces [ J 1. J Global Optim, 2010,23 : 689-694. 被引量:1
  • 5Kennedy J, Eberhart R. Particle swarm optimization[ C]//Proc IEEE Congr Evol Comput. Australia, 1995:1942-1948. 被引量:1
  • 6Li G Q, Niu P F, Xiao X G. Development and investigation of effient artificial bee colony algorithm for numerical function optimization[ J ]. Ap- plied Soft Compution, 2012,12:320-332. 被引量:1
  • 7Karaboga D, B asturk B. A powe Cul and efficient alogrithm for numerical function optimization:artificial bee colony( ABC ) algorithm [ J ]. Journal of Gaobal Optimization, 2007,39 ( 3 ) :459 -471. 被引量:1
  • 8Karaboga D, B asturk B. On the performance of artificial bee colony(ABC) algorithm[ J ]. Applied Soft Computing, 2008,8 (1) :687-197. 被引量:1
  • 9Gao W F. Improved artificial bee colony algorithm for global optimization [ J ]. Information Processing Letters, 2011,111:871-882. 被引量:1

同被引文献31

  • 1李秋红,孙健国,周继超.航空发动机PID控制参数优化的改进遗传算法[J].南京航空航天大学学报,2006,38(2):162-165. 被引量:17
  • 2曹志松,朴英.基于混合遗传算法的航空发动机PID控制参数寻优[J].航空动力学报,2007,22(9):1588-1592. 被引量:18
  • 3樊思齐,李华聪,樊丁,等.航空发动机控制[M].西安:西北丁业大学出版社,2008. 被引量:2
  • 4Cooper J, Hinde C. Improving Genetic Algorithms' Effi- ciency Using Intelligent Fitness Functions [M]. Berlin: Developments in Applied Artificial Intelligence, Springer Berlin Heidelberg, 2003: 636-643. 被引量:1
  • 5Zhu G, Kwong S. Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization [J]. Ap- plied Mathematics and Computation, 2010, 217 (7): 3166-3173. 被引量:1
  • 6Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization[ R]. Technical Report-tr06 , Er- ciyes University, Engineering Faculty, Computer Engi- neering Department, 2005. 被引量:1
  • 7Karaboga D, Basturk B. A Powerful and Efficient Algo- rithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm [ J ]. Journal of Global Op- timization, 2007, 39(3): 459-471. 被引量:1
  • 8冯庆娴,丁海军.用于求解函数优化问题的蜂群算法[EB/OL].http://www.paper.edu.cn,2008.08.29. 被引量:1
  • 9Zhong S, Dong Y F, Sarosh A. Artificial Bee Colony Al- gorithm for Parametric Optimization of Spacecraft Atti- tude Tracking Controller [M]. Berlin: Foundations and Practical Applications of Cognitive Systems and Informa- tion Processing, Springer Berlin Heidelberg, 2014: 501- 510. 被引量:1
  • 10Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007,39 ( 3 ) : 459-471. 被引量:1

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部