摘要
Using symplectic integrator propagator, a three-dimensional fourth-order symplectic finite difference time domain (SFDTD) method is studied, which is of the fourth order in both the time and space domains. The method is nondissipative and can save more memory compared with the traditional FDTD method. The total field and scattered field (TF-SF) technique is derived for the SFDTD method to provide the incident wave source conditions. The bistatic radar cross section (RCS) of a dielectric sphere is computed by using the SFDTD method for the first time. Numerical results suggest that the SFDTD algorithm acquires better stability and accuracy compared with the traditional FDTD method.
Using symplectic integrator propagator, a three-dimensional fourth-order symplectic finite difference time domain (SFDTD) method is studied, which is of the fourth order in both the time and space domains. The method is nondissipative and can save more memory compared with the traditional FDTD method. The total field and scattered field (TF-SF) technique is derived for the SFDTD method to provide the incident wave source conditions. The bistatic radar cross section (RCS) of a dielectric sphere is computed by using the SFDTD method for the first time. Numerical results suggest that the SFDTD algorithm acquires better stability and accuracy compared with the traditional FDTD method.
基金
Supported partially by the National Natural Science Foundation of China under Grant No 6037104.