期刊文献+

Robust identification for multi_section freeway traffic models 被引量:1

Robust identification for multi_section freeway traffic models
下载PDF
导出
摘要 Since it is difficult to fit measured parameters using the conventional traffic model, a new traffic density and average speed model is introduced in this paper. To determine traffic model structures accurately, a model identification method for uncertain nonlinear system is developed. To simplify uncertain nonlinear problem, this paper presents a new robust criterion to identify the multi-section traffic model structure of freeway efficiently. In the new model identification criterion, numerically efficient U-D factofization is used to avoid computing the determinant values of two complex matrices. By estimating the values of U-D factor of data matrix, both the upper and lower bounds of system uncertainties are described. Thus a model structure identification algorithm is proposed. Comparisons between identification outputs and simulation outputs of traffic states show that the traffic states can be accurately predicted by means of the new traffic models and the structure identification criterion. Since it is difficult to fit measured parameters using the conventional traffic model, a new traffic density and average speed model is introduced in this paper. To determine traffic model structures accurately, a model identification method for uncertain nonlinear system is developed. To simplify uncertain nonlinear problem, this paper presents a new robust criterion to identify the multi-section traffic model structure of freeway efficiently. In the new model identification criterion, numerically efficient U-D factofization is used to avoid computing the determinant values of two complex matrices. By estimating the values of U-D factor of data matrix, both the upper and lower bounds of system uncertainties are described. Thus a model structure identification algorithm is proposed. Comparisons between identification outputs and simulation outputs of traffic states show that the traffic states can be accurately predicted by means of the new traffic models and the structure identification criterion.
作者 Zhongke SHI
出处 《控制理论与应用(英文版)》 EI 2005年第3期213-217,共5页
基金 The work was supported by Chinese Science Foundation (No .60134010) .
关键词 Traffic model Robust identification Traffic prediction Traffic model Robust identification Traffic prediction
  • 相关文献

同被引文献3

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部