期刊文献+

大型泵站双孔出水流道偏流分析 被引量:11

Analysis of flow deviation in two-channel discharge passage of a large pump station
下载PDF
导出
摘要 原型观测和模型试验都表明,轴流泵和导叶式混流泵双孔出水流道两孔流量不等,存在偏流.指出流道水力损失与水流环量有关,分析偏流对流道水力损失和泵装置效率的影响,研究偏流形成机理,提出消除偏流的方法.结果表明:水泵出流环量和出水弯管二次流共同作用形成了出水流道偏流,偏流使出水流道水力损失增大,泵装置效率下降.增大后导叶出口安放角,可以消除环量和偏流,提高泵装置效率1.6~2.4个百分点. Prototype observation and model experiment indicate that flows in two channels of the discharge passage of an axial-flow pump and a guide vane mixed-flow pump arc unequal to each other, there is flow deviation. It is pointed out that passage hydraulic loss is related to the flow circulation, the influence of flow deviation on passage hydraulic loss and pump assembly efficiency is analyzed, the forming mechanism of flow deviation is investigated, and the method of eliminating flow deviation is put forward. Results indicate that flow deviation in discharge passage is formed by co-action of pump outflow circulation and secondary flows in outflow curved pipe, hydraulic loss of discharge passage increases and pump assembly efficiency decreases because of flow deviation. Flow circulation and deviation could be eliminated by enlarging the back guide blade outlet incidence, and pump assembly efficiency could be increased by 1.6~2.4 percentage points.
出处 《水力发电学报》 EI CSCD 北大核心 2005年第6期110-114,120,共6页 Journal of Hydroelectric Engineering
基金 国家自然科学基金项目(50179032) 江苏省水利动力工程重点实验室基金项目(KJS03086)
关键词 大型泵站 双孔出水流道 偏流 流场测定 水力损失 泵装置效率 large pump stations two-channel discharge passage flow deviation flow fields determination hydraulic loss pump assembly efficiency
  • 相关文献

参考文献5

二级参考文献12

  • 1[1]Smagrinsky J. General Circulation Experiments with the primitive equations Ⅰ[J]. Mon Weath Rev, 1963, 91 (3): 99-165. 被引量:1
  • 2[2]Deardorff J W. A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers[J]. J Fluid Mechanics, 1970, 41(2):453-480. 被引量:1
  • 3[3]Schumann U. Subgrid Scale Model for Finite-Difference Simulations of Turbulent Flows in Plane Channels and Annuli[J]. J Comp Phys, 1975, 18(3): 376-404. 被引量:1
  • 4[4]Germano M, Piomelli U, et al. A Dynamic Subgrid-Scale Eddy Viscosity Model[J]. Phys Fluids, 1991, A3(7): 1760-1765. 被引量:1
  • 5[5]Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Phys Fluids A, 1992, 4(3): 633-635. 被引量:1
  • 6[6]Yan Zang, Robert L Street, Jeffrey R Koseff. A dynamic mixed subgrid-scale model and its application to turbulent recirculation flows[J]. Phys Fluids A, 1993, 5(12): 3186-3196. 被引量:1
  • 7[7]Sandip Ghosal, Thomas S Lund, et al. A dynamic localization model for large-eddy simulation of turbulent flows[J]. J Fluid Mech, 1995, 286:229-255. 被引量:1
  • 8[8]Taylor A M, Whitelaw J H, et al. Curved Ducts with Strong Secondary Motion: Velocity Measurements of Developing Laminar and Turbulent Flow[J]. J Of Fluids Engineering, 1982, 104(3):350-359. 被引量:1
  • 9[9]Humphrey J A C, Whitelaw J H, et al. Turbulent flow in a square duct with strong curvature[J]. J Fluid Mech, 1981, 103: 443-463. 被引量:1
  • 10[10]Joel H. Ferziger Direct and Large Eddy Simulation of Turbulence[J].Transaction of the Japan.Society of Mechanical Engineers(B), 2000, 66(651): 2-11. 被引量:1

共引文献8

同被引文献110

引证文献11

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部