期刊文献+

基于一种动态特征选择融合算法的蛋白质结构类预测

Prediction of Protein Structural Classes Based on one DFS Algorithm
下载PDF
导出
摘要 本文根据氨基酸理化性质,基于氨基酸组成成分与自相关函数相结合特征提取法从非同源蛋白质序列中提取七个特征集,采用局部正确性的动态特征选择算法进行多特征组合来预测蛋白质结构类,并与各个特征集进行了比较。结果表明,DFS-LA算法的预测总精度较各个特征集均有不同程度的提高。Jackknife检验下,DFS-LA算法的预测总精度为82.80%,比COMP特征集提高8.91%;独立测试检验下,DFS-LA算法的预测总精度为86.67%,比COMP特征集提高11.67%。这说明DFS-LA算法可有效提高结构类预测精度,多特征组合能在一定程度上更多地反映蛋白质的空间结构信息。 According to physicochemical properties of amino acid, the approach o f feature extraction of incorporating amino acid composition with different auto-correlation functions has been introduced to predict non-homologous protein structural classes and seven feature sets could be gained. We have combined multiple features using Dynamic Feature Selection with Local Accuracy (DFS- LA ) algorithm. The comparisons of the predictive results from combination of multiple features and each parameter data set show that the total predictive accuracy are remarkably improved by using DFS_LA algorithm. In jackknife test, the total predictive accuracy using DFS_LA algorithm is 82. 8096 , which is 8.91 percentile higher than that of COMP parameter data set. In independent test, the total predictive accuracy using DFS_LA algorithm is 86. 6796 which is 11.67 percentile higher than that of COMP parameter data set, These results show that the predictive accuracies of protein structural classes can be effectively improved by using DFS_LA algorithm, To some extent, combination of multiple features can reflect more protein spatial information.
出处 《世界科技研究与发展》 CSCD 2005年第6期53-57,共5页 World Sci-Tech R&D
基金 国家自然科学基金(60372085)资助项目
关键词 多特征组合 蛋白质结构类 动态特征选择 combination of multiple features, protein structural classes, dynamic feature selection
  • 相关文献

参考文献12

  • 1Anfinsen,C B,Haber E,Sela M,White F H.The kinetics of the formation of native ribonuclease during oxidation of the reduced polypeptide chain.Proc.Natl.Acad.Sci.U.S.A,1961,47:1309~1314 被引量:1
  • 2Eisenhaber F,person B,Argos P.Protein structure prediction:recognition of primary,secondary and tertiary structural features from amino acid sequence[J].Crit Rev Biochem Mol Biol,1995,30:1~94 被引量:1
  • 3Nakashima H,Nishikawa K,Ooi T.The folding type of a protein is relevant to the amino acid composition[J].Biochem,1986,99:152~ 162 被引量:1
  • 4吕志清,李前忠.用离散量预测蛋白质的结构型[J].生物物理学报,2001,17(4):703-712. 被引量:32
  • 5Yu-Dong Cai,et al.Prediction of protein structural classes by neural network.Biochimie,2000,82,783~785 被引量:1
  • 6Yu-Dong Cai,et al.Prediction of protein structural classes by support vector machines.Computers and Chemistry,2002,26:293~296 被引量:1
  • 7秦红珊,杨新岐,曹文斗.从非同源蛋白质的一级序列预测其结构类[J].生物物理学报,2002,18(2):213-222. 被引量:8
  • 8Kevin Woods,et.al.Combination of Multiple Classifiers Using Local Accuracy Estimates.IEEE,1997,19(4),405~410 被引量:1
  • 9Chou KC,Maggiora GM.Domain structural prediction[J].Protein Engineering,1998,11 (7):523 ~538 被引量:1
  • 10Kawashima S,Ogata H,Kanehisa M.Aaindex:Amino Acid Index Database[J].Nucleic Acids Res.1999,27(1):368~369 被引量:1

二级参考文献8

  • 1Luo L F,Proteins:Struct Funct Genet,2000年,39卷,9页 被引量:1
  • 2Chou K C,Protein Eng,1998年,11卷,523页 被引量:1
  • 3Wang Z X,Protein Eng,1998年,11卷,621页 被引量:1
  • 4Luo L F,Proceedings of the Int Symposium on Theoretical Biophysics and Biomathematics,1997年,71页 被引量:1
  • 5Chou K C,Crit Rev Biochem Mol Biol,1995年,30卷,275页 被引量:1
  • 6Zhong C T,Protein Eng,1995年,8卷,425页 被引量:1
  • 7Chou K C,Proteins:Struct Funct Genet,1995年,21卷,319页 被引量:1
  • 8Chou K C,J Biol Chem,1994年,269卷,22014页 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部